Optimal. Leaf size=33 \[ \frac {5}{5+\log (5)+\log \left (-4+3 \left (e^2+e^{\frac {x-4 x^2}{x}}-x\right )\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.46, antiderivative size = 28, normalized size of antiderivative = 0.85, number of steps used = 3, number of rules used = 3, integrand size = 172, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.017, Rules used = {6688, 12, 6686} \begin {gather*} \frac {5}{\log \left (-3 x+3 e^{1-4 x}+3 e^2-4\right )+5+\log (5)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6686
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {15 \left (4 e+e^{4 x}\right )}{\left (3 e+3 e^{2+4 x}-e^{4 x} (4+3 x)\right ) \left (5 \left (1+\frac {\log (5)}{5}\right )+\log \left (-4+3 e^2+3 e^{1-4 x}-3 x\right )\right )^2} \, dx\\ &=15 \int \frac {4 e+e^{4 x}}{\left (3 e+3 e^{2+4 x}-e^{4 x} (4+3 x)\right ) \left (5 \left (1+\frac {\log (5)}{5}\right )+\log \left (-4+3 e^2+3 e^{1-4 x}-3 x\right )\right )^2} \, dx\\ &=\frac {5}{5+\log (5)+\log \left (-4+3 e^2+3 e^{1-4 x}-3 x\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 28, normalized size = 0.85 \begin {gather*} \frac {5}{5+\log (5)+\log \left (-4+3 e^2+3 e^{1-4 x}-3 x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.44, size = 26, normalized size = 0.79 \begin {gather*} \frac {5}{\log \relax (5) + \log \left (-3 \, x + 3 \, e^{2} + 3 \, e^{\left (-4 \, x + 1\right )} - 4\right ) + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.02, size = 26, normalized size = 0.79 \begin {gather*} \frac {5}{\log \relax (5) + \log \left (-3 \, x + 3 \, e^{2} + 3 \, e^{\left (-4 \, x + 1\right )} - 4\right ) + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.34, size = 27, normalized size = 0.82
method | result | size |
norman | \(\frac {5}{\ln \left (3 \,{\mathrm e}^{-4 x +1}+3 \,{\mathrm e}^{2}-3 x -4\right )+\ln \relax (5)+5}\) | \(27\) |
risch | \(\frac {5}{\ln \left (3 \,{\mathrm e}^{-4 x +1}+3 \,{\mathrm e}^{2}-3 x -4\right )+\ln \relax (5)+5}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.66, size = 36, normalized size = 1.09 \begin {gather*} -\frac {5}{4 \, x - \log \relax (5) - \log \left (-{\left (3 \, x - 3 \, e^{2} + 4\right )} e^{\left (4 \, x\right )} + 3 \, e\right ) - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.94, size = 24, normalized size = 0.73 \begin {gather*} \frac {5}{\ln \left (15\,{\mathrm {e}}^2-15\,x+15\,{\mathrm {e}}^{-4\,x}\,\mathrm {e}-20\right )+5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.33, size = 26, normalized size = 0.79 \begin {gather*} \frac {5}{\log {\left (- 3 x + 3 e^{1 - 4 x} - 4 + 3 e^{2} \right )} + \log {\relax (5 )} + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________