Optimal. Leaf size=22 \[ 5+\log \left (-4+x-5 \left (x+\frac {x}{-25+e^2-x}\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.08, antiderivative size = 37, normalized size of antiderivative = 1.68, number of steps used = 3, number of rules used = 2, integrand size = 65, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.031, Rules used = {2074, 628} \begin {gather*} \log \left (4 x^2+\left (99-4 e^2\right ) x+4 \left (25-e^2\right )\right )-\log \left (x-e^2+25\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 628
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {1}{-25+e^2-x}+\frac {99-4 e^2+8 x}{4 \left (25-e^2\right )+\left (99-4 e^2\right ) x+4 x^2}\right ) \, dx\\ &=-\log \left (25-e^2+x\right )+\int \frac {99-4 e^2+8 x}{4 \left (25-e^2\right )+\left (99-4 e^2\right ) x+4 x^2} \, dx\\ &=-\log \left (25-e^2+x\right )+\log \left (4 \left (25-e^2\right )+\left (99-4 e^2\right ) x+4 x^2\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 34, normalized size = 1.55 \begin {gather*} -\log \left (25-e^2+x\right )+\log \left (100-4 e^2+99 x-4 e^2 x+4 x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 29, normalized size = 1.32 \begin {gather*} \log \left (4 \, x^{2} - 4 \, {\left (x + 1\right )} e^{2} + 99 \, x + 100\right ) - \log \left (x - e^{2} + 25\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.22, size = 63, normalized size = 2.86 \begin {gather*} -1.33333333334167 \, \log \left (x + 17.6109439011000\right ) + 0.666666666673333 \, \log \left (x + 16.2791329762000\right ) + 0.666666666666667 \, \log \left (x + 1.08181092487000\right ) + \frac {1}{3} \, \log \left ({\left | 4 \, x^{3} - 8 \, x^{2} e^{2} + 199 \, x^{2} + 4 \, x e^{4} - 203 \, x e^{2} + 2575 \, x + 4 \, e^{4} - 200 \, e^{2} + 2500 \right |}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 32, normalized size = 1.45
method | result | size |
norman | \(-\ln \left ({\mathrm e}^{2}-x -25\right )+\ln \left (4 \,{\mathrm e}^{2} x -4 x^{2}+4 \,{\mathrm e}^{2}-99 x -100\right )\) | \(32\) |
risch | \(-\ln \left (-{\mathrm e}^{2}+x +25\right )+\ln \left (4 x^{2}+\left (-4 \,{\mathrm e}^{2}+99\right ) x -4 \,{\mathrm e}^{2}+100\right )\) | \(32\) |
default | \(-\left (\munderset {\textit {\_R} =\RootOf \left (4 \textit {\_Z}^{3}+\left (-8 \,{\mathrm e}^{2}+199\right ) \textit {\_Z}^{2}+\left (-203 \,{\mathrm e}^{2}+4 \,{\mathrm e}^{4}+2575\right ) \textit {\_Z} -200 \,{\mathrm e}^{2}+4 \,{\mathrm e}^{4}+2500\right )}{\sum }\frac {\left (8 \,{\mathrm e}^{2} \textit {\_R} -4 \textit {\_R}^{2}+195 \,{\mathrm e}^{2}-4 \,{\mathrm e}^{4}-200 \textit {\_R} -2375\right ) \ln \left (x -\textit {\_R} \right )}{4 \,{\mathrm e}^{4}-16 \,{\mathrm e}^{2} \textit {\_R} +12 \textit {\_R}^{2}-203 \,{\mathrm e}^{2}+398 \textit {\_R} +2575}\right )\) | \(99\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 32, normalized size = 1.45 \begin {gather*} \log \left (4 \, x^{2} - x {\left (4 \, e^{2} - 99\right )} - 4 \, e^{2} + 100\right ) - \log \left (x - e^{2} + 25\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.41, size = 29, normalized size = 1.32 \begin {gather*} \ln \left (\frac {99\,x}{4}-{\mathrm {e}}^2-x\,{\mathrm {e}}^2+x^2+25\right )-\ln \left (x-{\mathrm {e}}^2+25\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.68, size = 26, normalized size = 1.18 \begin {gather*} - \log {\left (x - e^{2} + 25 \right )} + \log {\left (x^{2} + x \left (\frac {99}{4} - e^{2}\right ) - e^{2} + 25 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________