Optimal. Leaf size=25 \[ -e^5+16 \left (-5+x^2\right )+\frac {-4+e^4+x+\log (4)}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 22, normalized size of antiderivative = 0.88, number of steps used = 2, number of rules used = 1, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.050, Rules used = {14} \begin {gather*} 16 x^2-\frac {4-e^4-\log (4)}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (32 x+\frac {4-e^4-\log (4)}{x^2}\right ) \, dx\\ &=16 x^2-\frac {4-e^4-\log (4)}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 16, normalized size = 0.64 \begin {gather*} \frac {-4+e^4+16 x^3+\log (4)}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.46, size = 17, normalized size = 0.68 \begin {gather*} \frac {16 \, x^{3} + e^{4} + 2 \, \log \relax (2) - 4}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 18, normalized size = 0.72 \begin {gather*} 16 \, x^{2} + \frac {e^{4} + 2 \, \log \relax (2) - 4}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 18, normalized size = 0.72
method | result | size |
gosper | \(\frac {16 x^{3}+2 \ln \relax (2)+{\mathrm e}^{4}-4}{x}\) | \(18\) |
norman | \(\frac {16 x^{3}+2 \ln \relax (2)+{\mathrm e}^{4}-4}{x}\) | \(18\) |
default | \(16 x^{2}-\frac {-2 \ln \relax (2)-{\mathrm e}^{4}+4}{x}\) | \(22\) |
risch | \(16 x^{2}+\frac {2 \ln \relax (2)}{x}+\frac {{\mathrm e}^{4}}{x}-\frac {4}{x}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 18, normalized size = 0.72 \begin {gather*} 16 \, x^{2} + \frac {e^{4} + 2 \, \log \relax (2) - 4}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.04, size = 16, normalized size = 0.64 \begin {gather*} \frac {{\mathrm {e}}^4+\ln \relax (4)-4}{x}+16\,x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 15, normalized size = 0.60 \begin {gather*} 16 x^{2} + \frac {-4 + 2 \log {\relax (2 )} + e^{4}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________