3.68.16 \(\int \frac {4-e^4+32 x^3-\log (4)}{x^2} \, dx\)

Optimal. Leaf size=25 \[ -e^5+16 \left (-5+x^2\right )+\frac {-4+e^4+x+\log (4)}{x} \]

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 22, normalized size of antiderivative = 0.88, number of steps used = 2, number of rules used = 1, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.050, Rules used = {14} \begin {gather*} 16 x^2-\frac {4-e^4-\log (4)}{x} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(4 - E^4 + 32*x^3 - Log[4])/x^2,x]

[Out]

16*x^2 - (4 - E^4 - Log[4])/x

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\int \left (32 x+\frac {4-e^4-\log (4)}{x^2}\right ) \, dx\\ &=16 x^2-\frac {4-e^4-\log (4)}{x}\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 16, normalized size = 0.64 \begin {gather*} \frac {-4+e^4+16 x^3+\log (4)}{x} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(4 - E^4 + 32*x^3 - Log[4])/x^2,x]

[Out]

(-4 + E^4 + 16*x^3 + Log[4])/x

________________________________________________________________________________________

fricas [A]  time = 0.46, size = 17, normalized size = 0.68 \begin {gather*} \frac {16 \, x^{3} + e^{4} + 2 \, \log \relax (2) - 4}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((32*x^3-2*log(2)+4-exp(4))/x^2,x, algorithm="fricas")

[Out]

(16*x^3 + e^4 + 2*log(2) - 4)/x

________________________________________________________________________________________

giac [A]  time = 0.13, size = 18, normalized size = 0.72 \begin {gather*} 16 \, x^{2} + \frac {e^{4} + 2 \, \log \relax (2) - 4}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((32*x^3-2*log(2)+4-exp(4))/x^2,x, algorithm="giac")

[Out]

16*x^2 + (e^4 + 2*log(2) - 4)/x

________________________________________________________________________________________

maple [A]  time = 0.03, size = 18, normalized size = 0.72




method result size



gosper \(\frac {16 x^{3}+2 \ln \relax (2)+{\mathrm e}^{4}-4}{x}\) \(18\)
norman \(\frac {16 x^{3}+2 \ln \relax (2)+{\mathrm e}^{4}-4}{x}\) \(18\)
default \(16 x^{2}-\frac {-2 \ln \relax (2)-{\mathrm e}^{4}+4}{x}\) \(22\)
risch \(16 x^{2}+\frac {2 \ln \relax (2)}{x}+\frac {{\mathrm e}^{4}}{x}-\frac {4}{x}\) \(25\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((32*x^3-2*ln(2)+4-exp(4))/x^2,x,method=_RETURNVERBOSE)

[Out]

(16*x^3+2*ln(2)+exp(4)-4)/x

________________________________________________________________________________________

maxima [A]  time = 0.36, size = 18, normalized size = 0.72 \begin {gather*} 16 \, x^{2} + \frac {e^{4} + 2 \, \log \relax (2) - 4}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((32*x^3-2*log(2)+4-exp(4))/x^2,x, algorithm="maxima")

[Out]

16*x^2 + (e^4 + 2*log(2) - 4)/x

________________________________________________________________________________________

mupad [B]  time = 0.04, size = 16, normalized size = 0.64 \begin {gather*} \frac {{\mathrm {e}}^4+\ln \relax (4)-4}{x}+16\,x^2 \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp(4) + 2*log(2) - 32*x^3 - 4)/x^2,x)

[Out]

(exp(4) + log(4) - 4)/x + 16*x^2

________________________________________________________________________________________

sympy [A]  time = 0.10, size = 15, normalized size = 0.60 \begin {gather*} 16 x^{2} + \frac {-4 + 2 \log {\relax (2 )} + e^{4}}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((32*x**3-2*ln(2)+4-exp(4))/x**2,x)

[Out]

16*x**2 + (-4 + 2*log(2) + exp(4))/x

________________________________________________________________________________________