3.67.4 \(\int \frac {-16 x+(-4-4 x) \log (3)+e^x (16+8 \log (3))}{-4 x^2+(3 x-e^{5/3} x-x^2) \log (3)+e^x (4 x+(-3+e^{5/3}+x) \log (3))+(e^x \log (3)-x \log (3)) \log (-e^x+x)} \, dx\)

Optimal. Leaf size=32 \[ \log \left (\left (3-e^{5/3}-x-\frac {4 x}{\log (3)}-\log \left (-e^x+x\right )\right )^4\right ) \]

________________________________________________________________________________________

Rubi [A]  time = 0.41, antiderivative size = 34, normalized size of antiderivative = 1.06, number of steps used = 2, number of rules used = 2, integrand size = 91, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.022, Rules used = {6688, 6684} \begin {gather*} 4 \log \left (x (4+\log (3))+\log (3) \log \left (x-e^x\right )-\left (3-e^{5/3}\right ) \log (3)\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(-16*x + (-4 - 4*x)*Log[3] + E^x*(16 + 8*Log[3]))/(-4*x^2 + (3*x - E^(5/3)*x - x^2)*Log[3] + E^x*(4*x + (-
3 + E^(5/3) + x)*Log[3]) + (E^x*Log[3] - x*Log[3])*Log[-E^x + x]),x]

[Out]

4*Log[-((3 - E^(5/3))*Log[3]) + x*(4 + Log[3]) + Log[3]*Log[-E^x + x]]

Rule 6684

Int[(u_)/(y_), x_Symbol] :> With[{q = DerivativeDivides[y, u, x]}, Simp[q*Log[RemoveContent[y, x]], x] /;  !Fa
lseQ[q]]

Rule 6688

Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-4 (\log (3)+x (4+\log (3)))+4 e^x (4+\log (9))}{\left (e^x-x\right ) \left (\left (-3+e^{5/3}\right ) \log (3)+x (4+\log (3))+\log (3) \log \left (-e^x+x\right )\right )} \, dx\\ &=4 \log \left (-\left (\left (3-e^{5/3}\right ) \log (3)\right )+x (4+\log (3))+\log (3) \log \left (-e^x+x\right )\right )\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [F]  time = 0.56, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {-16 x+(-4-4 x) \log (3)+e^x (16+8 \log (3))}{-4 x^2+\left (3 x-e^{5/3} x-x^2\right ) \log (3)+e^x \left (4 x+\left (-3+e^{5/3}+x\right ) \log (3)\right )+\left (e^x \log (3)-x \log (3)\right ) \log \left (-e^x+x\right )} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Integrate[(-16*x + (-4 - 4*x)*Log[3] + E^x*(16 + 8*Log[3]))/(-4*x^2 + (3*x - E^(5/3)*x - x^2)*Log[3] + E^x*(4*
x + (-3 + E^(5/3) + x)*Log[3]) + (E^x*Log[3] - x*Log[3])*Log[-E^x + x]),x]

[Out]

Integrate[(-16*x + (-4 - 4*x)*Log[3] + E^x*(16 + 8*Log[3]))/(-4*x^2 + (3*x - E^(5/3)*x - x^2)*Log[3] + E^x*(4*
x + (-3 + E^(5/3) + x)*Log[3]) + (E^x*Log[3] - x*Log[3])*Log[-E^x + x]), x]

________________________________________________________________________________________

fricas [A]  time = 0.56, size = 25, normalized size = 0.78 \begin {gather*} 4 \, \log \left ({\left (x + e^{\frac {5}{3}} - 3\right )} \log \relax (3) + \log \relax (3) \log \left (x - e^{x}\right ) + 4 \, x\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((8*log(3)+16)*exp(x)+(-4*x-4)*log(3)-16*x)/((log(3)*exp(x)-x*log(3))*log(x-exp(x))+((exp(5/3)+x-3)*
log(3)+4*x)*exp(x)+(-x*exp(5/3)-x^2+3*x)*log(3)-4*x^2),x, algorithm="fricas")

[Out]

4*log((x + e^(5/3) - 3)*log(3) + log(3)*log(x - e^x) + 4*x)

________________________________________________________________________________________

giac [A]  time = 0.20, size = 30, normalized size = 0.94 \begin {gather*} 4 \, \log \left (x \log \relax (3) + e^{\frac {5}{3}} \log \relax (3) + \log \relax (3) \log \left (x - e^{x}\right ) + 4 \, x - 3 \, \log \relax (3)\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((8*log(3)+16)*exp(x)+(-4*x-4)*log(3)-16*x)/((log(3)*exp(x)-x*log(3))*log(x-exp(x))+((exp(5/3)+x-3)*
log(3)+4*x)*exp(x)+(-x*exp(5/3)-x^2+3*x)*log(3)-4*x^2),x, algorithm="giac")

[Out]

4*log(x*log(3) + e^(5/3)*log(3) + log(3)*log(x - e^x) + 4*x - 3*log(3))

________________________________________________________________________________________

maple [A]  time = 0.34, size = 31, normalized size = 0.97




method result size



norman \(4 \ln \left ({\mathrm e}^{\frac {5}{3}} \ln \relax (3)+\ln \left (x -{\mathrm e}^{x}\right ) \ln \relax (3)+x \ln \relax (3)-3 \ln \relax (3)+4 x \right )\) \(31\)
risch \(4 \ln \left (\ln \left (x -{\mathrm e}^{x}\right )+\frac {{\mathrm e}^{\frac {5}{3}} \ln \relax (3)+x \ln \relax (3)-3 \ln \relax (3)+4 x}{\ln \relax (3)}\right )\) \(34\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((8*ln(3)+16)*exp(x)+(-4*x-4)*ln(3)-16*x)/((ln(3)*exp(x)-x*ln(3))*ln(x-exp(x))+((exp(5/3)+x-3)*ln(3)+4*x)*
exp(x)+(-x*exp(5/3)-x^2+3*x)*ln(3)-4*x^2),x,method=_RETURNVERBOSE)

[Out]

4*ln(exp(5/3)*ln(3)+ln(x-exp(x))*ln(3)+x*ln(3)-3*ln(3)+4*x)

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((8*log(3)+16)*exp(x)+(-4*x-4)*log(3)-16*x)/((log(3)*exp(x)-x*log(3))*log(x-exp(x))+((exp(5/3)+x-3)*
log(3)+4*x)*exp(x)+(-x*exp(5/3)-x^2+3*x)*log(3)-4*x^2),x, algorithm="maxima")

[Out]

Exception raised: RuntimeError >> ECL says: THROW: The catch RAT-ERR is undefined.

________________________________________________________________________________________

mupad [B]  time = 4.94, size = 28, normalized size = 0.88 \begin {gather*} 4\,\ln \left (4\,x+x\,\ln \relax (3)+\ln \relax (3)\,\ln \left (x-{\mathrm {e}}^x\right )+\ln \relax (3)\,\left ({\mathrm {e}}^{5/3}-3\right )\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((16*x + log(3)*(4*x + 4) - exp(x)*(8*log(3) + 16))/(log(3)*(x*exp(5/3) - 3*x + x^2) + log(x - exp(x))*(x*l
og(3) - exp(x)*log(3)) - exp(x)*(4*x + log(3)*(x + exp(5/3) - 3)) + 4*x^2),x)

[Out]

4*log(4*x + x*log(3) + log(3)*log(x - exp(x)) + log(3)*(exp(5/3) - 3))

________________________________________________________________________________________

sympy [A]  time = 0.38, size = 34, normalized size = 1.06 \begin {gather*} 4 \log {\left (\frac {x \log {\relax (3 )} + 4 x - 3 \log {\relax (3 )} + e^{\frac {5}{3}} \log {\relax (3 )}}{\log {\relax (3 )}} + \log {\left (x - e^{x} \right )} \right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((8*ln(3)+16)*exp(x)+(-4*x-4)*ln(3)-16*x)/((ln(3)*exp(x)-x*ln(3))*ln(x-exp(x))+((exp(5/3)+x-3)*ln(3)
+4*x)*exp(x)+(-x*exp(5/3)-x**2+3*x)*ln(3)-4*x**2),x)

[Out]

4*log((x*log(3) + 4*x - 3*log(3) + exp(5/3)*log(3))/log(3) + log(x - exp(x)))

________________________________________________________________________________________