Optimal. Leaf size=25 \[ e^{(5+x)^2+\frac {45}{x^2 \log \left (4+\frac {7+x}{3}\right )}} \]
________________________________________________________________________________________
Rubi [A] time = 4.81, antiderivative size = 23, normalized size of antiderivative = 0.92, number of steps used = 4, number of rules used = 4, integrand size = 108, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.037, Rules used = {1593, 6741, 6688, 6706} \begin {gather*} e^{\frac {45}{x^2 \log \left (\frac {x+19}{3}\right )}+(x+5)^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1593
Rule 6688
Rule 6706
Rule 6741
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\frac {45+\left (25 x^2+10 x^3+x^4\right ) \log \left (\frac {19+x}{3}\right )}{x^2 \log \left (\frac {19+x}{3}\right )}\right ) \left (-45 x+(-1710-90 x) \log \left (\frac {19+x}{3}\right )+\left (190 x^3+48 x^4+2 x^5\right ) \log ^2\left (\frac {19+x}{3}\right )\right )}{x^3 (19+x) \log ^2\left (\frac {19+x}{3}\right )} \, dx\\ &=\int \frac {\exp \left (\frac {45+\left (25 x^2+10 x^3+x^4\right ) \log \left (\frac {19+x}{3}\right )}{x^2 \log \left (\frac {19}{3}+\frac {x}{3}\right )}\right ) \left (-45 x+(-1710-90 x) \log \left (\frac {19+x}{3}\right )+\left (190 x^3+48 x^4+2 x^5\right ) \log ^2\left (\frac {19+x}{3}\right )\right )}{x^3 (19+x) \log ^2\left (\frac {19}{3}+\frac {x}{3}\right )} \, dx\\ &=\int \frac {e^{(5+x)^2+\frac {45}{x^2 \log \left (\frac {19+x}{3}\right )}} \left (-45 x-90 (19+x) \log \left (\frac {19+x}{3}\right )+2 x^3 \left (95+24 x+x^2\right ) \log ^2\left (\frac {19+x}{3}\right )\right )}{x^3 (19+x) \log ^2\left (\frac {19}{3}+\frac {x}{3}\right )} \, dx\\ &=e^{(5+x)^2+\frac {45}{x^2 \log \left (\frac {19+x}{3}\right )}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 25, normalized size = 1.00 \begin {gather*} e^{25+10 x+x^2+\frac {45}{x^2 \log \left (\frac {19+x}{3}\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 36, normalized size = 1.44 \begin {gather*} e^{\left (\frac {{\left (x^{4} + 10 \, x^{3} + 25 \, x^{2}\right )} \log \left (\frac {1}{3} \, x + \frac {19}{3}\right ) + 45}{x^{2} \log \left (\frac {1}{3} \, x + \frac {19}{3}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.98, size = 22, normalized size = 0.88 \begin {gather*} e^{\left (x^{2} + 10 \, x + \frac {45}{x^{2} \log \left (\frac {1}{3} \, x + \frac {19}{3}\right )} + 25\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.44, size = 48, normalized size = 1.92
method | result | size |
risch | \({\mathrm e}^{\frac {\ln \left (\frac {x}{3}+\frac {19}{3}\right ) x^{4}+10 \ln \left (\frac {x}{3}+\frac {19}{3}\right ) x^{3}+25 x^{2} \ln \left (\frac {x}{3}+\frac {19}{3}\right )+45}{x^{2} \ln \left (\frac {x}{3}+\frac {19}{3}\right )}}\) | \(48\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.68, size = 25, normalized size = 1.00 \begin {gather*} e^{\left (x^{2} + 10 \, x - \frac {45}{x^{2} {\left (\log \relax (3) - \log \left (x + 19\right )\right )}} + 25\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.48, size = 25, normalized size = 1.00 \begin {gather*} {\mathrm {e}}^{10\,x}\,{\mathrm {e}}^{x^2}\,{\mathrm {e}}^{25}\,{\mathrm {e}}^{\frac {45}{x^2\,\ln \left (\frac {x}{3}+\frac {19}{3}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.48, size = 36, normalized size = 1.44 \begin {gather*} e^{\frac {\left (x^{4} + 10 x^{3} + 25 x^{2}\right ) \log {\left (\frac {x}{3} + \frac {19}{3} \right )} + 45}{x^{2} \log {\left (\frac {x}{3} + \frac {19}{3} \right )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________