Optimal. Leaf size=16 \[ e^{-\frac {x}{e^3}} (2-x+\log (x)) \]
________________________________________________________________________________________
Rubi [A] time = 0.07, antiderivative size = 25, normalized size of antiderivative = 1.56, number of steps used = 1, number of rules used = 1, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.029, Rules used = {2288} \begin {gather*} \frac {e^{-\frac {x}{e^3}} \left (-x^2+2 x+x \log (x)\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {e^{-\frac {x}{e^3}} \left (2 x-x^2+x \log (x)\right )}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 16, normalized size = 1.00 \begin {gather*} e^{-\frac {x}{e^3}} (2-x+\log (x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.64, size = 35, normalized size = 2.19 \begin {gather*} -{\left (x - 2\right )} e^{\left (-{\left (x + 3 \, e^{3}\right )} e^{\left (-3\right )} + 3\right )} + e^{\left (-{\left (x + 3 \, e^{3}\right )} e^{\left (-3\right )} + 3\right )} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (x^{2} - {\left (x - 1\right )} e^{3} - x \log \relax (x) - 2 \, x\right )} e^{\left (-x e^{\left (-3\right )} - 3\right )}}{x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 18, normalized size = 1.12
method | result | size |
norman | \(\left (2+\ln \relax (x )-x \right ) {\mathrm e}^{-{\mathrm e}^{-3} x}\) | \(18\) |
risch | \({\mathrm e}^{-{\mathrm e}^{-3} x} \ln \relax (x )-\left (x -2\right ) {\mathrm e}^{-{\mathrm e}^{-3} x}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.40, size = 38, normalized size = 2.38 \begin {gather*} -{\left (x + e^{3}\right )} e^{\left (-x e^{\left (-3\right )}\right )} + e^{\left (-x e^{\left (-3\right )}\right )} \log \relax (x) + e^{\left (-x e^{\left (-3\right )} + 3\right )} + 2 \, e^{\left (-x e^{\left (-3\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.23, size = 14, normalized size = 0.88 \begin {gather*} {\mathrm {e}}^{-x\,{\mathrm {e}}^{-3}}\,\left (\ln \relax (x)-x+2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.35, size = 12, normalized size = 0.75 \begin {gather*} \left (- x + \log {\relax (x )} + 2\right ) e^{- \frac {x}{e^{3}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________