Optimal. Leaf size=33 \[ \frac {x^2}{2 x+x \left (2-e+\frac {-5+e^4-x+x^2}{\log (x)}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.23, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-5+e^4-x+x^2+\left (-5+e^4-x^2\right ) \log (x)+(4-e) \log ^2(x)}{25+e^8+10 x-9 x^2-2 x^3+x^4+e^4 \left (-10-2 x+2 x^2\right )+\left (-40+(8-2 e) e^4-8 x+8 x^2+e \left (10+2 x-2 x^2\right )\right ) \log (x)+\left (16-8 e+e^2\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-5 \left (1-\frac {e^4}{5}\right )-x+x^2+\left (-5+e^4-x^2\right ) \log (x)-(-4+e) \log ^2(x)}{\left (5 \left (1-\frac {e^4}{5}\right )+x-x^2+(-4+e) \log (x)\right )^2} \, dx\\ &=\int \left (\frac {1}{4-e}+\frac {-\left ((4-e) \left (5-e^4\right )\right )+\left (1+e-e^4\right ) x-\left (5+e-2 e^4\right ) x^2-3 x^3+2 x^4}{(4-e) \left (5 \left (1-\frac {e^4}{5}\right )+x-x^2-4 \left (1-\frac {e}{4}\right ) \log (x)\right )^2}+\frac {-5+e^4-2 x+3 x^2}{(4-e) \left (5 \left (1-\frac {e^4}{5}\right )+x-x^2-4 \left (1-\frac {e}{4}\right ) \log (x)\right )}\right ) \, dx\\ &=\frac {x}{4-e}+\frac {\int \frac {-\left ((4-e) \left (5-e^4\right )\right )+\left (1+e-e^4\right ) x-\left (5+e-2 e^4\right ) x^2-3 x^3+2 x^4}{\left (5 \left (1-\frac {e^4}{5}\right )+x-x^2-4 \left (1-\frac {e}{4}\right ) \log (x)\right )^2} \, dx}{4-e}+\frac {\int \frac {-5+e^4-2 x+3 x^2}{5 \left (1-\frac {e^4}{5}\right )+x-x^2-4 \left (1-\frac {e}{4}\right ) \log (x)} \, dx}{4-e}\\ &=\frac {x}{4-e}+\frac {\int \left (\frac {(4-e) \left (-5+e^4\right )}{\left (5 \left (1-\frac {e^4}{5}\right )+x-x^2-4 \left (1-\frac {e}{4}\right ) \log (x)\right )^2}+\frac {\left (1+e-e^4\right ) x}{\left (5 \left (1-\frac {e^4}{5}\right )+x-x^2-4 \left (1-\frac {e}{4}\right ) \log (x)\right )^2}+\frac {\left (-5-e+2 e^4\right ) x^2}{\left (5 \left (1-\frac {e^4}{5}\right )+x-x^2-4 \left (1-\frac {e}{4}\right ) \log (x)\right )^2}-\frac {3 x^3}{\left (5 \left (1-\frac {e^4}{5}\right )+x-x^2-4 \left (1-\frac {e}{4}\right ) \log (x)\right )^2}+\frac {2 x^4}{\left (5 \left (1-\frac {e^4}{5}\right )+x-x^2-4 \left (1-\frac {e}{4}\right ) \log (x)\right )^2}\right ) \, dx}{4-e}+\frac {\int \left (\frac {\left (1-\frac {5}{e^4}\right ) e^4}{5 \left (1-\frac {e^4}{5}\right )+x-x^2-4 \left (1-\frac {e}{4}\right ) \log (x)}+\frac {3 x^2}{5 \left (1-\frac {e^4}{5}\right )+x-x^2-4 \left (1-\frac {e}{4}\right ) \log (x)}+\frac {2 x}{-5 \left (1-\frac {e^4}{5}\right )-x+x^2+4 \left (1-\frac {e}{4}\right ) \log (x)}\right ) \, dx}{4-e}\\ &=\frac {x}{4-e}+\frac {2 \int \frac {x^4}{\left (5 \left (1-\frac {e^4}{5}\right )+x-x^2-4 \left (1-\frac {e}{4}\right ) \log (x)\right )^2} \, dx}{4-e}+\frac {2 \int \frac {x}{-5 \left (1-\frac {e^4}{5}\right )-x+x^2+4 \left (1-\frac {e}{4}\right ) \log (x)} \, dx}{4-e}-\frac {3 \int \frac {x^3}{\left (5 \left (1-\frac {e^4}{5}\right )+x-x^2-4 \left (1-\frac {e}{4}\right ) \log (x)\right )^2} \, dx}{4-e}+\frac {3 \int \frac {x^2}{5 \left (1-\frac {e^4}{5}\right )+x-x^2-4 \left (1-\frac {e}{4}\right ) \log (x)} \, dx}{4-e}-\frac {\left (5+e-2 e^4\right ) \int \frac {x^2}{\left (5 \left (1-\frac {e^4}{5}\right )+x-x^2-4 \left (1-\frac {e}{4}\right ) \log (x)\right )^2} \, dx}{4-e}-\frac {\left (5-e^4\right ) \int \frac {1}{5 \left (1-\frac {e^4}{5}\right )+x-x^2-4 \left (1-\frac {e}{4}\right ) \log (x)} \, dx}{4-e}+\frac {\left (1+e-e^4\right ) \int \frac {x}{\left (5 \left (1-\frac {e^4}{5}\right )+x-x^2-4 \left (1-\frac {e}{4}\right ) \log (x)\right )^2} \, dx}{4-e}+\left (-5+e^4\right ) \int \frac {1}{\left (5 \left (1-\frac {e^4}{5}\right )+x-x^2-4 \left (1-\frac {e}{4}\right ) \log (x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.38, size = 24, normalized size = 0.73 \begin {gather*} \frac {x \log (x)}{-5+e^4-x+x^2-(-4+e) \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 24, normalized size = 0.73 \begin {gather*} \frac {x \log \relax (x)}{x^{2} - {\left (e - 4\right )} \log \relax (x) - x + e^{4} - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.26, size = 26, normalized size = 0.79 \begin {gather*} \frac {x \log \relax (x)}{x^{2} - e \log \relax (x) - x + e^{4} + 4 \, \log \relax (x) - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.28, size = 27, normalized size = 0.82
method | result | size |
norman | \(\frac {x \ln \relax (x )}{-{\mathrm e} \ln \relax (x )+x^{2}+{\mathrm e}^{4}-x +4 \ln \relax (x )-5}\) | \(27\) |
risch | \(-\frac {x}{{\mathrm e}-4}+\frac {x \left ({\mathrm e}^{4}+x^{2}-x -5\right )}{\left ({\mathrm e}-4\right ) \left (-{\mathrm e} \ln \relax (x )+x^{2}+{\mathrm e}^{4}-x +4 \ln \relax (x )-5\right )}\) | \(51\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.43, size = 24, normalized size = 0.73 \begin {gather*} \frac {x \log \relax (x)}{x^{2} - {\left (e - 4\right )} \log \relax (x) - x + e^{4} - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.73, size = 64, normalized size = 1.94 \begin {gather*} \frac {x-{\mathrm {e}}^4-4\,\ln \relax (x)+\mathrm {e}\,\ln \relax (x)+16\,x\,\ln \relax (x)-x^2-4\,x\,\mathrm {e}\,\ln \relax (x)+5}{4\,\left (\mathrm {e}-4\right )\,\left (x-{\mathrm {e}}^4-4\,\ln \relax (x)+\mathrm {e}\,\ln \relax (x)-x^2+5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.26, size = 70, normalized size = 2.12 \begin {gather*} - \frac {x}{-4 + e} + \frac {- x^{3} + x^{2} - x e^{4} + 5 x}{- e x^{2} + 4 x^{2} - 4 x + e x + \left (- 8 e + e^{2} + 16\right ) \log {\relax (x )} - e^{5} - 20 + 5 e + 4 e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________