3.64.74 \(\int -e^{7-e^x+x} \, dx\)

Optimal. Leaf size=11 \[ -5+e^{7-e^x} \]

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 9, normalized size of antiderivative = 0.82, number of steps used = 2, number of rules used = 2, integrand size = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {2282, 2194} \begin {gather*} e^{7-e^x} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[-E^(7 - E^x + x),x]

[Out]

E^(7 - E^x)

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rule 2282

Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Dist[v/D[v, x], Subst[Int[FunctionOfExponentialFu
nction[u, x]/x, x], x, v], x]] /; FunctionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; F
reeQ[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x))*(F_)[v_] /; FreeQ[{a, b, c}, x
] && InverseFunctionQ[F[x]]]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=-\operatorname {Subst}\left (\int e^{7-x} \, dx,x,e^x\right )\\ &=e^{7-e^x}\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 9, normalized size = 0.82 \begin {gather*} e^{7-e^x} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[-E^(7 - E^x + x),x]

[Out]

E^(7 - E^x)

________________________________________________________________________________________

fricas [A]  time = 0.60, size = 7, normalized size = 0.64 \begin {gather*} e^{\left (-e^{x} + 7\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(-exp(x)*exp(-exp(x)+7),x, algorithm="fricas")

[Out]

e^(-e^x + 7)

________________________________________________________________________________________

giac [A]  time = 0.14, size = 7, normalized size = 0.64 \begin {gather*} e^{\left (-e^{x} + 7\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(-exp(x)*exp(-exp(x)+7),x, algorithm="giac")

[Out]

e^(-e^x + 7)

________________________________________________________________________________________

maple [A]  time = 0.02, size = 8, normalized size = 0.73




method result size



derivativedivides \({\mathrm e}^{-{\mathrm e}^{x}+7}\) \(8\)
default \({\mathrm e}^{-{\mathrm e}^{x}+7}\) \(8\)
norman \({\mathrm e}^{-{\mathrm e}^{x}+7}\) \(8\)
risch \({\mathrm e}^{-{\mathrm e}^{x}+7}\) \(8\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-exp(x)*exp(-exp(x)+7),x,method=_RETURNVERBOSE)

[Out]

exp(-exp(x)+7)

________________________________________________________________________________________

maxima [A]  time = 0.35, size = 7, normalized size = 0.64 \begin {gather*} e^{\left (-e^{x} + 7\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(-exp(x)*exp(-exp(x)+7),x, algorithm="maxima")

[Out]

e^(-e^x + 7)

________________________________________________________________________________________

mupad [B]  time = 0.04, size = 8, normalized size = 0.73 \begin {gather*} {\mathrm {e}}^7\,{\mathrm {e}}^{-{\mathrm {e}}^x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-exp(7 - exp(x))*exp(x),x)

[Out]

exp(7)*exp(-exp(x))

________________________________________________________________________________________

sympy [A]  time = 0.10, size = 5, normalized size = 0.45 \begin {gather*} e^{7 - e^{x}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(-exp(x)*exp(-exp(x)+7),x)

[Out]

exp(7 - exp(x))

________________________________________________________________________________________