Optimal. Leaf size=27 \[ x+\frac {25 e^x (1-x) \log ^2\left (1+\frac {2}{x}\right )}{2 x^2} \]
________________________________________________________________________________________
Rubi [F] time = 4.90, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {4 x^3+2 x^4+e^x (-100+100 x) \log \left (\frac {2+x}{x}\right )+e^x \left (-100+50 x-25 x^3\right ) \log ^2\left (\frac {2+x}{x}\right )}{4 x^3+2 x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 x^3+2 x^4+e^x (-100+100 x) \log \left (\frac {2+x}{x}\right )+e^x \left (-100+50 x-25 x^3\right ) \log ^2\left (\frac {2+x}{x}\right )}{x^3 (4+2 x)} \, dx\\ &=\int \left (1+\frac {25 e^x \log \left (1+\frac {2}{x}\right ) \left (-4+4 x-4 \log \left (\frac {2+x}{x}\right )+2 x \log \left (\frac {2+x}{x}\right )-x^3 \log \left (\frac {2+x}{x}\right )\right )}{2 x^3 (2+x)}\right ) \, dx\\ &=x+\frac {25}{2} \int \frac {e^x \log \left (1+\frac {2}{x}\right ) \left (-4+4 x-4 \log \left (\frac {2+x}{x}\right )+2 x \log \left (\frac {2+x}{x}\right )-x^3 \log \left (\frac {2+x}{x}\right )\right )}{x^3 (2+x)} \, dx\\ &=x+\frac {25}{2} \int \frac {e^x \log \left (1+\frac {2}{x}\right ) \left (-4+4 x-\left (4-2 x+x^3\right ) \log \left (\frac {2+x}{x}\right )\right )}{x^3 (2+x)} \, dx\\ &=x+\frac {25}{2} \int \left (\frac {4 e^x (-1+x) \log \left (1+\frac {2}{x}\right )}{x^3 (2+x)}+\frac {e^x \left (-2+2 x-x^2\right ) \log ^2\left (1+\frac {2}{x}\right )}{x^3}\right ) \, dx\\ &=x+\frac {25}{2} \int \frac {e^x \left (-2+2 x-x^2\right ) \log ^2\left (1+\frac {2}{x}\right )}{x^3} \, dx+50 \int \frac {e^x (-1+x) \log \left (1+\frac {2}{x}\right )}{x^3 (2+x)} \, dx\\ &=x+\frac {25 e^x \log \left (1+\frac {2}{x}\right )}{2 x^2}-\frac {25 e^x \log \left (1+\frac {2}{x}\right )}{x}+\frac {25}{4} \text {Ei}(x) \log \left (1+\frac {2}{x}\right )+\frac {75 \text {Ei}(2+x) \log \left (1+\frac {2}{x}\right )}{4 e^2}+\frac {25}{2} \int \left (-\frac {2 e^x \log ^2\left (1+\frac {2}{x}\right )}{x^3}+\frac {2 e^x \log ^2\left (1+\frac {2}{x}\right )}{x^2}-\frac {e^x \log ^2\left (1+\frac {2}{x}\right )}{x}\right ) \, dx-50 \int \frac {2 e^{2+x} (-1+2 x)-e^2 x^2 \text {Ei}(x)-3 x^2 \text {Ei}(2+x)}{4 e^2 x^3 (2+x)} \, dx\\ &=x+\frac {25 e^x \log \left (1+\frac {2}{x}\right )}{2 x^2}-\frac {25 e^x \log \left (1+\frac {2}{x}\right )}{x}+\frac {25}{4} \text {Ei}(x) \log \left (1+\frac {2}{x}\right )+\frac {75 \text {Ei}(2+x) \log \left (1+\frac {2}{x}\right )}{4 e^2}-\frac {25}{2} \int \frac {e^x \log ^2\left (1+\frac {2}{x}\right )}{x} \, dx-25 \int \frac {e^x \log ^2\left (1+\frac {2}{x}\right )}{x^3} \, dx+25 \int \frac {e^x \log ^2\left (1+\frac {2}{x}\right )}{x^2} \, dx-\frac {25 \int \frac {2 e^{2+x} (-1+2 x)-e^2 x^2 \text {Ei}(x)-3 x^2 \text {Ei}(2+x)}{x^3 (2+x)} \, dx}{2 e^2}\\ &=x+\frac {25 e^x \log \left (1+\frac {2}{x}\right )}{2 x^2}-\frac {25 e^x \log \left (1+\frac {2}{x}\right )}{x}+\frac {25}{4} \text {Ei}(x) \log \left (1+\frac {2}{x}\right )+\frac {75 \text {Ei}(2+x) \log \left (1+\frac {2}{x}\right )}{4 e^2}-\frac {25}{2} \int \frac {e^x \log ^2\left (1+\frac {2}{x}\right )}{x} \, dx-25 \int \frac {e^x \log ^2\left (1+\frac {2}{x}\right )}{x^3} \, dx+25 \int \frac {e^x \log ^2\left (1+\frac {2}{x}\right )}{x^2} \, dx-\frac {25 \int \left (\frac {2 e^{2+x} (-1+2 x)}{x^3 (2+x)}+\frac {-e^2 \text {Ei}(x)-3 \text {Ei}(2+x)}{x (2+x)}\right ) \, dx}{2 e^2}\\ &=x+\frac {25 e^x \log \left (1+\frac {2}{x}\right )}{2 x^2}-\frac {25 e^x \log \left (1+\frac {2}{x}\right )}{x}+\frac {25}{4} \text {Ei}(x) \log \left (1+\frac {2}{x}\right )+\frac {75 \text {Ei}(2+x) \log \left (1+\frac {2}{x}\right )}{4 e^2}-\frac {25}{2} \int \frac {e^x \log ^2\left (1+\frac {2}{x}\right )}{x} \, dx-25 \int \frac {e^x \log ^2\left (1+\frac {2}{x}\right )}{x^3} \, dx+25 \int \frac {e^x \log ^2\left (1+\frac {2}{x}\right )}{x^2} \, dx-\frac {25 \int \frac {-e^2 \text {Ei}(x)-3 \text {Ei}(2+x)}{x (2+x)} \, dx}{2 e^2}-\frac {25 \int \frac {e^{2+x} (-1+2 x)}{x^3 (2+x)} \, dx}{e^2}\\ &=x+\frac {25 e^x \log \left (1+\frac {2}{x}\right )}{2 x^2}-\frac {25 e^x \log \left (1+\frac {2}{x}\right )}{x}+\frac {25}{4} \text {Ei}(x) \log \left (1+\frac {2}{x}\right )+\frac {75 \text {Ei}(2+x) \log \left (1+\frac {2}{x}\right )}{4 e^2}-\frac {25}{2} \int \frac {e^x \log ^2\left (1+\frac {2}{x}\right )}{x} \, dx-25 \int \frac {e^x \log ^2\left (1+\frac {2}{x}\right )}{x^3} \, dx+25 \int \frac {e^x \log ^2\left (1+\frac {2}{x}\right )}{x^2} \, dx-\frac {25 \int \left (-\frac {e^2 \text {Ei}(x)}{x (2+x)}-\frac {3 \text {Ei}(2+x)}{x (2+x)}\right ) \, dx}{2 e^2}-\frac {25 \int \left (-\frac {e^{2+x}}{2 x^3}+\frac {5 e^{2+x}}{4 x^2}-\frac {5 e^{2+x}}{8 x}+\frac {5 e^{2+x}}{8 (2+x)}\right ) \, dx}{e^2}\\ &=x+\frac {25 e^x \log \left (1+\frac {2}{x}\right )}{2 x^2}-\frac {25 e^x \log \left (1+\frac {2}{x}\right )}{x}+\frac {25}{4} \text {Ei}(x) \log \left (1+\frac {2}{x}\right )+\frac {75 \text {Ei}(2+x) \log \left (1+\frac {2}{x}\right )}{4 e^2}+\frac {25}{2} \int \frac {\text {Ei}(x)}{x (2+x)} \, dx-\frac {25}{2} \int \frac {e^x \log ^2\left (1+\frac {2}{x}\right )}{x} \, dx-25 \int \frac {e^x \log ^2\left (1+\frac {2}{x}\right )}{x^3} \, dx+25 \int \frac {e^x \log ^2\left (1+\frac {2}{x}\right )}{x^2} \, dx+\frac {25 \int \frac {e^{2+x}}{x^3} \, dx}{2 e^2}+\frac {125 \int \frac {e^{2+x}}{x} \, dx}{8 e^2}-\frac {125 \int \frac {e^{2+x}}{2+x} \, dx}{8 e^2}-\frac {125 \int \frac {e^{2+x}}{x^2} \, dx}{4 e^2}+\frac {75 \int \frac {\text {Ei}(2+x)}{x (2+x)} \, dx}{2 e^2}\\ &=-\frac {25 e^x}{4 x^2}+\frac {125 e^x}{4 x}+x+\frac {125 \text {Ei}(x)}{8}-\frac {125 \text {Ei}(2+x)}{8 e^2}+\frac {25 e^x \log \left (1+\frac {2}{x}\right )}{2 x^2}-\frac {25 e^x \log \left (1+\frac {2}{x}\right )}{x}+\frac {25}{4} \text {Ei}(x) \log \left (1+\frac {2}{x}\right )+\frac {75 \text {Ei}(2+x) \log \left (1+\frac {2}{x}\right )}{4 e^2}+\frac {25}{2} \int \left (\frac {\text {Ei}(x)}{2 x}-\frac {\text {Ei}(x)}{2 (2+x)}\right ) \, dx-\frac {25}{2} \int \frac {e^x \log ^2\left (1+\frac {2}{x}\right )}{x} \, dx-25 \int \frac {e^x \log ^2\left (1+\frac {2}{x}\right )}{x^3} \, dx+25 \int \frac {e^x \log ^2\left (1+\frac {2}{x}\right )}{x^2} \, dx+\frac {25 \int \frac {e^{2+x}}{x^2} \, dx}{4 e^2}-\frac {125 \int \frac {e^{2+x}}{x} \, dx}{4 e^2}+\frac {75 \int \left (\frac {\text {Ei}(2+x)}{2 x}-\frac {\text {Ei}(2+x)}{2 (2+x)}\right ) \, dx}{2 e^2}\\ &=-\frac {25 e^x}{4 x^2}+\frac {25 e^x}{x}+x-\frac {125 \text {Ei}(x)}{8}-\frac {125 \text {Ei}(2+x)}{8 e^2}+\frac {25 e^x \log \left (1+\frac {2}{x}\right )}{2 x^2}-\frac {25 e^x \log \left (1+\frac {2}{x}\right )}{x}+\frac {25}{4} \text {Ei}(x) \log \left (1+\frac {2}{x}\right )+\frac {75 \text {Ei}(2+x) \log \left (1+\frac {2}{x}\right )}{4 e^2}+\frac {25}{4} \int \frac {\text {Ei}(x)}{x} \, dx-\frac {25}{4} \int \frac {\text {Ei}(x)}{2+x} \, dx-\frac {25}{2} \int \frac {e^x \log ^2\left (1+\frac {2}{x}\right )}{x} \, dx-25 \int \frac {e^x \log ^2\left (1+\frac {2}{x}\right )}{x^3} \, dx+25 \int \frac {e^x \log ^2\left (1+\frac {2}{x}\right )}{x^2} \, dx+\frac {25 \int \frac {e^{2+x}}{x} \, dx}{4 e^2}+\frac {75 \int \frac {\text {Ei}(2+x)}{x} \, dx}{4 e^2}-\frac {75 \int \frac {\text {Ei}(2+x)}{2+x} \, dx}{4 e^2}\\ &=-\frac {25 e^x}{4 x^2}+\frac {25 e^x}{x}+x-\frac {75 \text {Ei}(x)}{8}-\frac {125 \text {Ei}(2+x)}{8 e^2}+\frac {25 e^x \log \left (1+\frac {2}{x}\right )}{2 x^2}-\frac {25 e^x \log \left (1+\frac {2}{x}\right )}{x}+\frac {25}{4} \text {Ei}(x) \log \left (1+\frac {2}{x}\right )+\frac {75 \text {Ei}(2+x) \log \left (1+\frac {2}{x}\right )}{4 e^2}+\frac {25}{4} (E_1(-x)+\text {Ei}(x)) \log (x)-\frac {25}{4} \int \frac {E_1(-x)}{x} \, dx-\frac {25}{4} \int \frac {\text {Ei}(x)}{2+x} \, dx-\frac {25}{2} \int \frac {e^x \log ^2\left (1+\frac {2}{x}\right )}{x} \, dx-25 \int \frac {e^x \log ^2\left (1+\frac {2}{x}\right )}{x^3} \, dx+25 \int \frac {e^x \log ^2\left (1+\frac {2}{x}\right )}{x^2} \, dx+\frac {75 \int \frac {\text {Ei}(2+x)}{x} \, dx}{4 e^2}-\frac {75 \int \frac {\text {Ei}(2+x)}{2+x} \, dx}{4 e^2}\\ &=-\frac {25 e^x}{4 x^2}+\frac {25 e^x}{x}+x-\frac {75 \text {Ei}(x)}{8}-\frac {125 \text {Ei}(2+x)}{8 e^2}+\frac {25}{4} x \, _3F_3(1,1,1;2,2,2;x)+\frac {25 e^x \log \left (1+\frac {2}{x}\right )}{2 x^2}-\frac {25 e^x \log \left (1+\frac {2}{x}\right )}{x}+\frac {25}{4} \text {Ei}(x) \log \left (1+\frac {2}{x}\right )+\frac {75 \text {Ei}(2+x) \log \left (1+\frac {2}{x}\right )}{4 e^2}+\frac {25}{8} \log ^2(-x)+\frac {25}{4} \gamma \log (x)+\frac {25}{4} (E_1(-x)+\text {Ei}(x)) \log (x)-\frac {25}{4} \int \frac {\text {Ei}(x)}{2+x} \, dx-\frac {25}{2} \int \frac {e^x \log ^2\left (1+\frac {2}{x}\right )}{x} \, dx-25 \int \frac {e^x \log ^2\left (1+\frac {2}{x}\right )}{x^3} \, dx+25 \int \frac {e^x \log ^2\left (1+\frac {2}{x}\right )}{x^2} \, dx+\frac {75 \int \frac {\text {Ei}(2+x)}{x} \, dx}{4 e^2}-\frac {75 \int \frac {\text {Ei}(2+x)}{2+x} \, dx}{4 e^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 23.92, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {4 x^3+2 x^4+e^x (-100+100 x) \log \left (\frac {2+x}{x}\right )+e^x \left (-100+50 x-25 x^3\right ) \log ^2\left (\frac {2+x}{x}\right )}{4 x^3+2 x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 28, normalized size = 1.04 \begin {gather*} -\frac {25 \, {\left (x - 1\right )} e^{x} \log \left (\frac {x + 2}{x}\right )^{2} - 2 \, x^{3}}{2 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 40, normalized size = 1.48 \begin {gather*} -\frac {25 \, x e^{x} \log \left (\frac {x + 2}{x}\right )^{2} - 2 \, x^{3} - 25 \, e^{x} \log \left (\frac {x + 2}{x}\right )^{2}}{2 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.61, size = 1010, normalized size = 37.41
method | result | size |
risch | \(-\frac {25 \left (x -1\right ) {\mathrm e}^{x} \ln \left (2+x \right )^{2}}{2 x^{2}}+\frac {25 \,{\mathrm e}^{x} \left (i \pi x \mathrm {csgn}\left (\frac {i \left (2+x \right )}{x}\right )^{3}-i \pi x \mathrm {csgn}\left (\frac {i \left (2+x \right )}{x}\right )^{2} \mathrm {csgn}\left (\frac {i}{x}\right )-i \pi x \mathrm {csgn}\left (\frac {i \left (2+x \right )}{x}\right )^{2} \mathrm {csgn}\left (i \left (2+x \right )\right )+i \pi x \,\mathrm {csgn}\left (\frac {i \left (2+x \right )}{x}\right ) \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left (2+x \right )\right )-i \pi \mathrm {csgn}\left (\frac {i \left (2+x \right )}{x}\right )^{3}+i \pi \mathrm {csgn}\left (\frac {i \left (2+x \right )}{x}\right )^{2} \mathrm {csgn}\left (\frac {i}{x}\right )+i \pi \mathrm {csgn}\left (\frac {i \left (2+x \right )}{x}\right )^{2} \mathrm {csgn}\left (i \left (2+x \right )\right )-i \pi \,\mathrm {csgn}\left (\frac {i \left (2+x \right )}{x}\right ) \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left (2+x \right )\right )+2 x \ln \relax (x )-2 \ln \relax (x )\right ) \ln \left (2+x \right )}{2 x^{2}}+\frac {-100 x \,{\mathrm e}^{x} \ln \relax (x )^{2}-100 i {\mathrm e}^{x} \pi x \,\mathrm {csgn}\left (\frac {i \left (2+x \right )}{x}\right ) \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left (2+x \right )\right ) \ln \relax (x )+8 x^{3}+100 \,{\mathrm e}^{x} \ln \relax (x )^{2}-25 \,{\mathrm e}^{x} \pi ^{2} \mathrm {csgn}\left (\frac {i \left (2+x \right )}{x}\right )^{4} \mathrm {csgn}\left (i \left (2+x \right )\right )^{2}+50 \,{\mathrm e}^{x} \pi ^{2} \mathrm {csgn}\left (\frac {i \left (2+x \right )}{x}\right )^{5} \mathrm {csgn}\left (\frac {i}{x}\right )+50 \,{\mathrm e}^{x} \pi ^{2} \mathrm {csgn}\left (\frac {i \left (2+x \right )}{x}\right )^{5} \mathrm {csgn}\left (i \left (2+x \right )\right )+25 \,{\mathrm e}^{x} \pi ^{2} x \mathrm {csgn}\left (\frac {i \left (2+x \right )}{x}\right )^{6}-25 \,{\mathrm e}^{x} \pi ^{2} \mathrm {csgn}\left (\frac {i \left (2+x \right )}{x}\right )^{4} \mathrm {csgn}\left (\frac {i}{x}\right )^{2}-25 \,{\mathrm e}^{x} \pi ^{2} \mathrm {csgn}\left (\frac {i \left (2+x \right )}{x}\right )^{6}-100 i {\mathrm e}^{x} \pi x \mathrm {csgn}\left (\frac {i \left (2+x \right )}{x}\right )^{3} \ln \relax (x )-100 i {\mathrm e}^{x} \ln \relax (x ) \pi \mathrm {csgn}\left (\frac {i \left (2+x \right )}{x}\right )^{2} \mathrm {csgn}\left (\frac {i}{x}\right )-100 i {\mathrm e}^{x} \ln \relax (x ) \pi \mathrm {csgn}\left (\frac {i \left (2+x \right )}{x}\right )^{2} \mathrm {csgn}\left (i \left (2+x \right )\right )-50 \,{\mathrm e}^{x} \pi ^{2} x \mathrm {csgn}\left (\frac {i \left (2+x \right )}{x}\right )^{3} \mathrm {csgn}\left (\frac {i}{x}\right )^{2} \mathrm {csgn}\left (i \left (2+x \right )\right )+100 \,{\mathrm e}^{x} \pi ^{2} x \mathrm {csgn}\left (\frac {i \left (2+x \right )}{x}\right )^{4} \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left (2+x \right )\right )-50 \,{\mathrm e}^{x} \pi ^{2} x \mathrm {csgn}\left (\frac {i \left (2+x \right )}{x}\right )^{3} \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left (2+x \right )\right )^{2}+25 \,{\mathrm e}^{x} \pi ^{2} x \mathrm {csgn}\left (\frac {i \left (2+x \right )}{x}\right )^{2} \mathrm {csgn}\left (\frac {i}{x}\right )^{2} \mathrm {csgn}\left (i \left (2+x \right )\right )^{2}+25 \,{\mathrm e}^{x} \pi ^{2} x \mathrm {csgn}\left (\frac {i \left (2+x \right )}{x}\right )^{4} \mathrm {csgn}\left (\frac {i}{x}\right )^{2}+25 \,{\mathrm e}^{x} \pi ^{2} x \mathrm {csgn}\left (\frac {i \left (2+x \right )}{x}\right )^{4} \mathrm {csgn}\left (i \left (2+x \right )\right )^{2}-50 \,{\mathrm e}^{x} \pi ^{2} x \mathrm {csgn}\left (\frac {i \left (2+x \right )}{x}\right )^{5} \mathrm {csgn}\left (\frac {i}{x}\right )-50 \,{\mathrm e}^{x} \pi ^{2} x \mathrm {csgn}\left (\frac {i \left (2+x \right )}{x}\right )^{5} \mathrm {csgn}\left (i \left (2+x \right )\right )-25 \,{\mathrm e}^{x} \pi ^{2} \mathrm {csgn}\left (\frac {i \left (2+x \right )}{x}\right )^{2} \mathrm {csgn}\left (\frac {i}{x}\right )^{2} \mathrm {csgn}\left (i \left (2+x \right )\right )^{2}+50 \,{\mathrm e}^{x} \pi ^{2} \mathrm {csgn}\left (\frac {i \left (2+x \right )}{x}\right )^{3} \mathrm {csgn}\left (\frac {i}{x}\right )^{2} \mathrm {csgn}\left (i \left (2+x \right )\right )+50 \,{\mathrm e}^{x} \pi ^{2} \mathrm {csgn}\left (\frac {i \left (2+x \right )}{x}\right )^{3} \mathrm {csgn}\left (i \left (2+x \right )\right )^{2} \mathrm {csgn}\left (\frac {i}{x}\right )-100 \,{\mathrm e}^{x} \pi ^{2} \mathrm {csgn}\left (\frac {i \left (2+x \right )}{x}\right )^{4} \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left (2+x \right )\right )+100 i {\mathrm e}^{x} \ln \relax (x ) \pi \mathrm {csgn}\left (\frac {i \left (2+x \right )}{x}\right )^{3}+100 i {\mathrm e}^{x} \pi x \mathrm {csgn}\left (\frac {i \left (2+x \right )}{x}\right )^{2} \mathrm {csgn}\left (\frac {i}{x}\right ) \ln \relax (x )+100 i {\mathrm e}^{x} \pi x \mathrm {csgn}\left (\frac {i \left (2+x \right )}{x}\right )^{2} \mathrm {csgn}\left (i \left (2+x \right )\right ) \ln \relax (x )+100 i {\mathrm e}^{x} \ln \relax (x ) \pi \,\mathrm {csgn}\left (\frac {i \left (2+x \right )}{x}\right ) \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left (2+x \right )\right )}{8 x^{2}}\) | \(1010\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.52, size = 43, normalized size = 1.59 \begin {gather*} x - \frac {25 \, {\left ({\left (x - 1\right )} e^{x} \log \left (x + 2\right )^{2} - 2 \, {\left (x - 1\right )} e^{x} \log \left (x + 2\right ) \log \relax (x) + {\left (x - 1\right )} e^{x} \log \relax (x)^{2}\right )}}{2 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {4\,x^3+2\,x^4-{\mathrm {e}}^x\,{\ln \left (\frac {x+2}{x}\right )}^2\,\left (25\,x^3-50\,x+100\right )+{\mathrm {e}}^x\,\ln \left (\frac {x+2}{x}\right )\,\left (100\,x-100\right )}{2\,x^4+4\,x^3} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.34, size = 31, normalized size = 1.15 \begin {gather*} x + \frac {\left (- 25 x \log {\left (\frac {x + 2}{x} \right )}^{2} + 25 \log {\left (\frac {x + 2}{x} \right )}^{2}\right ) e^{x}}{2 x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________