Optimal. Leaf size=21 \[ 4-\frac {6 x}{5}+\frac {e^4 x^3}{(1-x)^2} \]
________________________________________________________________________________________
Rubi [A] time = 0.05, antiderivative size = 36, normalized size of antiderivative = 1.71, number of steps used = 2, number of rules used = 1, integrand size = 48, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.021, Rules used = {2074} \begin {gather*} -\frac {1}{5} \left (6-5 e^4\right ) x-\frac {3 e^4}{1-x}+\frac {e^4}{(1-x)^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {1}{5} \left (-6+5 e^4\right )-\frac {2 e^4}{(-1+x)^3}-\frac {3 e^4}{(-1+x)^2}\right ) \, dx\\ &=\frac {e^4}{(1-x)^2}-\frac {3 e^4}{1-x}-\frac {1}{5} \left (6-5 e^4\right ) x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 32, normalized size = 1.52 \begin {gather*} \frac {1}{5} \left (6-6 x+\frac {5 e^4 \left (-3+6 x-3 x^2+x^3\right )}{(-1+x)^2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.56, size = 43, normalized size = 2.05 \begin {gather*} -\frac {6 \, x^{3} - 12 \, x^{2} - 5 \, {\left (x^{3} - 2 \, x^{2} + 4 \, x - 2\right )} e^{4} + 6 \, x}{5 \, {\left (x^{2} - 2 \, x + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 24, normalized size = 1.14 \begin {gather*} x e^{4} - \frac {6}{5} \, x + \frac {3 \, x e^{4} - 2 \, e^{4}}{{\left (x - 1\right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 22, normalized size = 1.05
method | result | size |
norman | \(\frac {\frac {18 x}{5}+\left ({\mathrm e}^{4}-\frac {6}{5}\right ) x^{3}-\frac {12}{5}}{\left (x -1\right )^{2}}\) | \(22\) |
default | \(x \,{\mathrm e}^{4}-\frac {6 x}{5}+\frac {3 \,{\mathrm e}^{4}}{x -1}+\frac {{\mathrm e}^{4}}{\left (x -1\right )^{2}}\) | \(26\) |
risch | \(x \,{\mathrm e}^{4}-\frac {6 x}{5}+\frac {3 x \,{\mathrm e}^{4}-2 \,{\mathrm e}^{4}}{x^{2}-2 x +1}\) | \(30\) |
gosper | \(\frac {5 x^{3} {\mathrm e}^{4}-6 x^{3}+18 x -12}{5 x^{2}-10 x +5}\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 31, normalized size = 1.48 \begin {gather*} \frac {1}{5} \, x {\left (5 \, e^{4} - 6\right )} + \frac {3 \, x e^{4} - 2 \, e^{4}}{x^{2} - 2 \, x + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.08, size = 24, normalized size = 1.14 \begin {gather*} x\,\left ({\mathrm {e}}^4-\frac {6}{5}\right )-\frac {2\,{\mathrm {e}}^4-3\,x\,{\mathrm {e}}^4}{{\left (x-1\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 29, normalized size = 1.38 \begin {gather*} - x \left (\frac {6}{5} - e^{4}\right ) - \frac {- 3 x e^{4} + 2 e^{4}}{x^{2} - 2 x + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________