Optimal. Leaf size=23 \[ 9 \left (16-\frac {5}{x}+\left (x+\frac {9}{\log ^2\left (2+x^4\right )}\right )^2\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.63, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-11664 x^5-1296 x^6 \log ^2\left (2+x^4\right )+\left (324 x^2+162 x^6\right ) \log ^3\left (2+x^4\right )+\left (90+36 x^3+45 x^4+18 x^7\right ) \log ^5\left (2+x^4\right )}{\left (2 x^2+x^6\right ) \log ^5\left (2+x^4\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-11664 x^5-1296 x^6 \log ^2\left (2+x^4\right )+\left (324 x^2+162 x^6\right ) \log ^3\left (2+x^4\right )+\left (90+36 x^3+45 x^4+18 x^7\right ) \log ^5\left (2+x^4\right )}{x^2 \left (2+x^4\right ) \log ^5\left (2+x^4\right )} \, dx\\ &=\int \left (\frac {9 \left (5+2 x^3\right )}{x^2}-\frac {11664 x^3}{\left (2+x^4\right ) \log ^5\left (2+x^4\right )}-\frac {1296 x^4}{\left (2+x^4\right ) \log ^3\left (2+x^4\right )}+\frac {162}{\log ^2\left (2+x^4\right )}\right ) \, dx\\ &=9 \int \frac {5+2 x^3}{x^2} \, dx+162 \int \frac {1}{\log ^2\left (2+x^4\right )} \, dx-1296 \int \frac {x^4}{\left (2+x^4\right ) \log ^3\left (2+x^4\right )} \, dx-11664 \int \frac {x^3}{\left (2+x^4\right ) \log ^5\left (2+x^4\right )} \, dx\\ &=9 \int \left (\frac {5}{x^2}+2 x\right ) \, dx+162 \int \frac {1}{\log ^2\left (2+x^4\right )} \, dx-1296 \int \frac {x^4}{\left (2+x^4\right ) \log ^3\left (2+x^4\right )} \, dx-2916 \operatorname {Subst}\left (\int \frac {1}{(2+x) \log ^5(2+x)} \, dx,x,x^4\right )\\ &=-\frac {45}{x}+9 x^2+162 \int \frac {1}{\log ^2\left (2+x^4\right )} \, dx-1296 \int \frac {x^4}{\left (2+x^4\right ) \log ^3\left (2+x^4\right )} \, dx-2916 \operatorname {Subst}\left (\int \frac {1}{x \log ^5(x)} \, dx,x,2+x^4\right )\\ &=-\frac {45}{x}+9 x^2+162 \int \frac {1}{\log ^2\left (2+x^4\right )} \, dx-1296 \int \frac {x^4}{\left (2+x^4\right ) \log ^3\left (2+x^4\right )} \, dx-2916 \operatorname {Subst}\left (\int \frac {1}{x^5} \, dx,x,\log \left (2+x^4\right )\right )\\ &=-\frac {45}{x}+9 x^2+\frac {729}{\log ^4\left (2+x^4\right )}+162 \int \frac {1}{\log ^2\left (2+x^4\right )} \, dx-1296 \int \frac {x^4}{\left (2+x^4\right ) \log ^3\left (2+x^4\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 32, normalized size = 1.39 \begin {gather*} 9 \left (-\frac {5}{x}+x^2+\frac {81}{\log ^4\left (2+x^4\right )}+\frac {18 x}{\log ^2\left (2+x^4\right )}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.78, size = 44, normalized size = 1.91 \begin {gather*} \frac {9 \, {\left ({\left (x^{3} - 5\right )} \log \left (x^{4} + 2\right )^{4} + 18 \, x^{2} \log \left (x^{4} + 2\right )^{2} + 81 \, x\right )}}{x \log \left (x^{4} + 2\right )^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.81, size = 78, normalized size = 3.39 \begin {gather*} 9 \, x^{2} + \frac {81 \, {\left (2 \, x^{11} \log \left (x^{4} + 2\right )^{2} + 9 \, x^{10} + 4 \, x^{7} \log \left (x^{4} + 2\right )^{2} + 18 \, x^{6}\right )}}{x^{10} \log \left (x^{4} + 2\right )^{4} + 2 \, x^{6} \log \left (x^{4} + 2\right )^{4}} - \frac {45}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.36, size = 35, normalized size = 1.52
method | result | size |
risch | \(\frac {9 x^{3}-45}{x}+\frac {162 x \ln \left (x^{4}+2\right )^{2}+729}{\ln \left (x^{4}+2\right )^{4}}\) | \(35\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 44, normalized size = 1.91 \begin {gather*} \frac {9 \, {\left ({\left (x^{3} - 5\right )} \log \left (x^{4} + 2\right )^{2} + 18 \, x^{2}\right )}}{x \log \left (x^{4} + 2\right )^{2}} + \frac {729}{\log \left (x^{4} + 2\right )^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.30, size = 32, normalized size = 1.39 \begin {gather*} \frac {729}{{\ln \left (x^4+2\right )}^4}-\frac {45}{x}+9\,x^2+\frac {162\,x}{{\ln \left (x^4+2\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 29, normalized size = 1.26 \begin {gather*} 9 x^{2} + \frac {162 x \log {\left (x^{4} + 2 \right )}^{2} + 729}{\log {\left (x^{4} + 2 \right )}^{4}} - \frac {45}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________