Optimal. Leaf size=25 \[ \frac {3}{2} (-5+4 x) \left (-1+\frac {-2+x^2}{-x+\log (9)}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.06, antiderivative size = 43, normalized size of antiderivative = 1.72, number of steps used = 4, number of rules used = 3, integrand size = 51, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.059, Rules used = {27, 12, 1850} \begin {gather*} -6 x^2-\frac {3 (5-4 \log (9)) \left (2-\log ^2(9)\right )}{2 (x-\log (9))}+\frac {3}{2} x (1-4 \log (9)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 1850
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {30+3 x^2-24 x^3+\left (-24-6 x+36 x^2\right ) \log (9)-12 \log ^2(9)}{2 (x-\log (9))^2} \, dx\\ &=\frac {1}{2} \int \frac {30+3 x^2-24 x^3+\left (-24-6 x+36 x^2\right ) \log (9)-12 \log ^2(9)}{(x-\log (9))^2} \, dx\\ &=\frac {1}{2} \int \left (-24 x-3 (-1+4 \log (9))+\frac {3 (5-4 \log (9)) \left (2-\log ^2(9)\right )}{(x-\log (9))^2}\right ) \, dx\\ &=-6 x^2+\frac {3}{2} x (1-4 \log (9))-\frac {3 (5-4 \log (9)) \left (2-\log ^2(9)\right )}{2 (x-\log (9))}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 45, normalized size = 1.80 \begin {gather*} -\frac {3}{2} \left (4 x^2+x (-1+4 \log (9))+\frac {10-8 \log (9)-5 \log ^2(9)+4 \log ^3(9)}{x-\log (9)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.70, size = 46, normalized size = 1.84 \begin {gather*} -\frac {3 \, {\left (4 \, x^{3} - 4 \, {\left (4 \, x + 5\right )} \log \relax (3)^{2} + 32 \, \log \relax (3)^{3} - x^{2} + 2 \, {\left (x - 8\right )} \log \relax (3) + 10\right )}}{2 \, {\left (x - 2 \, \log \relax (3)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 42, normalized size = 1.68 \begin {gather*} -6 \, x^{2} - 12 \, x \log \relax (3) + \frac {3}{2} \, x - \frac {3 \, {\left (16 \, \log \relax (3)^{3} - 10 \, \log \relax (3)^{2} - 8 \, \log \relax (3) + 5\right )}}{x - 2 \, \log \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.55, size = 33, normalized size = 1.32
method | result | size |
gosper | \(-\frac {3 \left (-4 x^{3}+x^{2}-10+16 \ln \relax (3)^{2}+16 \ln \relax (3)\right )}{2 \left (2 \ln \relax (3)-x \right )}\) | \(33\) |
norman | \(\frac {-\frac {3 x^{2}}{2}+6 x^{3}+15-24 \ln \relax (3)^{2}-24 \ln \relax (3)}{2 \ln \relax (3)-x}\) | \(34\) |
default | \(-6 x^{2}-12 x \ln \relax (3)+\frac {3 x}{2}-\frac {3 \left (32 \ln \relax (3)^{3}-20 \ln \relax (3)^{2}-16 \ln \relax (3)+10\right )}{2 \left (-2 \ln \relax (3)+x \right )}\) | \(43\) |
risch | \(-12 x \ln \relax (3)-6 x^{2}+\frac {3 x}{2}+\frac {24 \ln \relax (3)^{3}}{\ln \relax (3)-\frac {x}{2}}-\frac {15 \ln \relax (3)^{2}}{\ln \relax (3)-\frac {x}{2}}-\frac {12 \ln \relax (3)}{\ln \relax (3)-\frac {x}{2}}+\frac {15}{2 \left (\ln \relax (3)-\frac {x}{2}\right )}\) | \(65\) |
meijerg | \(-\frac {6 x}{1-\frac {x}{2 \ln \relax (3)}}+\frac {15 x}{4 \ln \relax (3)^{2} \left (1-\frac {x}{2 \ln \relax (3)}\right )}-48 \ln \relax (3)^{2} \left (\frac {x \left (-\frac {x^{2}}{2 \ln \relax (3)^{2}}-\frac {3 x}{\ln \relax (3)}+12\right )}{8 \ln \relax (3) \left (1-\frac {x}{2 \ln \relax (3)}\right )}+3 \ln \left (1-\frac {x}{2 \ln \relax (3)}\right )\right )-2 \left (36 \ln \relax (3)+\frac {3}{2}\right ) \ln \relax (3) \left (-\frac {x \left (-\frac {3 x}{2 \ln \relax (3)}+6\right )}{6 \ln \relax (3) \left (1-\frac {x}{2 \ln \relax (3)}\right )}-2 \ln \left (1-\frac {x}{2 \ln \relax (3)}\right )\right )-6 \ln \relax (3) \left (\frac {x}{2 \ln \relax (3) \left (1-\frac {x}{2 \ln \relax (3)}\right )}+\ln \left (1-\frac {x}{2 \ln \relax (3)}\right )\right )-\frac {6 x}{\ln \relax (3) \left (1-\frac {x}{2 \ln \relax (3)}\right )}\) | \(190\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.34, size = 43, normalized size = 1.72 \begin {gather*} -6 \, x^{2} - \frac {3}{2} \, x {\left (8 \, \log \relax (3) - 1\right )} - \frac {3 \, {\left (16 \, \log \relax (3)^{3} - 10 \, \log \relax (3)^{2} - 8 \, \log \relax (3) + 5\right )}}{x - 2 \, \log \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.15, size = 42, normalized size = 1.68 \begin {gather*} \frac {24\,\ln \relax (3)+30\,{\ln \relax (3)}^2-48\,{\ln \relax (3)}^3-15}{x-2\,\ln \relax (3)}-6\,x^2-x\,\left (12\,\ln \relax (3)-\frac {3}{2}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.24, size = 42, normalized size = 1.68 \begin {gather*} - 6 x^{2} - x \left (- \frac {3}{2} + 12 \log {\relax (3 )}\right ) - \frac {- 30 \log {\relax (3 )}^{2} - 24 \log {\relax (3 )} + 15 + 48 \log {\relax (3 )}^{3}}{x - 2 \log {\relax (3 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________