3.63.23 \(\int \frac {24375+4500 x+4110 x^2+364 x^3+156 x^4}{24375 x+4525 x^2+4110 x^3+362 x^4+156 x^5} \, dx\)

Optimal. Leaf size=25 \[ \log \left (4 x+\frac {x}{3+\frac {x}{25+x^2+x (2+x)}}\right ) \]

________________________________________________________________________________________

Rubi [A]  time = 0.08, antiderivative size = 27, normalized size of antiderivative = 1.08, number of steps used = 4, number of rules used = 2, integrand size = 47, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.043, Rules used = {2074, 628} \begin {gather*} -\log \left (6 x^2+7 x+75\right )+\log \left (26 x^2+30 x+325\right )+\log (x) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(24375 + 4500*x + 4110*x^2 + 364*x^3 + 156*x^4)/(24375*x + 4525*x^2 + 4110*x^3 + 362*x^4 + 156*x^5),x]

[Out]

Log[x] - Log[75 + 7*x + 6*x^2] + Log[325 + 30*x + 26*x^2]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 2074

Int[(P_)^(p_)*(Q_)^(q_.), x_Symbol] :> With[{PP = Factor[P]}, Int[ExpandIntegrand[PP^p*Q^q, x], x] /;  !SumQ[N
onfreeFactors[PP, x]]] /; FreeQ[q, x] && PolyQ[P, x] && PolyQ[Q, x] && IntegerQ[p] && NeQ[P, x]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {1}{x}+\frac {-7-12 x}{75+7 x+6 x^2}+\frac {2 (15+26 x)}{325+30 x+26 x^2}\right ) \, dx\\ &=\log (x)+2 \int \frac {15+26 x}{325+30 x+26 x^2} \, dx+\int \frac {-7-12 x}{75+7 x+6 x^2} \, dx\\ &=\log (x)-\log \left (75+7 x+6 x^2\right )+\log \left (325+30 x+26 x^2\right )\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 27, normalized size = 1.08 \begin {gather*} \log (x)-\log \left (75+7 x+6 x^2\right )+\log \left (325+30 x+26 x^2\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(24375 + 4500*x + 4110*x^2 + 364*x^3 + 156*x^4)/(24375*x + 4525*x^2 + 4110*x^3 + 362*x^4 + 156*x^5),
x]

[Out]

Log[x] - Log[75 + 7*x + 6*x^2] + Log[325 + 30*x + 26*x^2]

________________________________________________________________________________________

fricas [A]  time = 0.70, size = 29, normalized size = 1.16 \begin {gather*} \log \left (26 \, x^{3} + 30 \, x^{2} + 325 \, x\right ) - \log \left (6 \, x^{2} + 7 \, x + 75\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((156*x^4+364*x^3+4110*x^2+4500*x+24375)/(156*x^5+362*x^4+4110*x^3+4525*x^2+24375*x),x, algorithm="fr
icas")

[Out]

log(26*x^3 + 30*x^2 + 325*x) - log(6*x^2 + 7*x + 75)

________________________________________________________________________________________

giac [A]  time = 0.26, size = 28, normalized size = 1.12 \begin {gather*} \log \left (26 \, x^{2} + 30 \, x + 325\right ) - \log \left (6 \, x^{2} + 7 \, x + 75\right ) + \log \left ({\left | x \right |}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((156*x^4+364*x^3+4110*x^2+4500*x+24375)/(156*x^5+362*x^4+4110*x^3+4525*x^2+24375*x),x, algorithm="gi
ac")

[Out]

log(26*x^2 + 30*x + 325) - log(6*x^2 + 7*x + 75) + log(abs(x))

________________________________________________________________________________________

maple [A]  time = 0.04, size = 28, normalized size = 1.12




method result size



default \(\ln \left (26 x^{2}+30 x +325\right )+\ln \relax (x )-\ln \left (6 x^{2}+7 x +75\right )\) \(28\)
norman \(\ln \left (26 x^{2}+30 x +325\right )+\ln \relax (x )-\ln \left (6 x^{2}+7 x +75\right )\) \(28\)
risch \(-\ln \left (6 x^{2}+7 x +75\right )+\ln \left (26 x^{3}+30 x^{2}+325 x \right )\) \(30\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((156*x^4+364*x^3+4110*x^2+4500*x+24375)/(156*x^5+362*x^4+4110*x^3+4525*x^2+24375*x),x,method=_RETURNVERBOS
E)

[Out]

ln(26*x^2+30*x+325)+ln(x)-ln(6*x^2+7*x+75)

________________________________________________________________________________________

maxima [A]  time = 0.39, size = 27, normalized size = 1.08 \begin {gather*} \log \left (26 \, x^{2} + 30 \, x + 325\right ) - \log \left (6 \, x^{2} + 7 \, x + 75\right ) + \log \relax (x) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((156*x^4+364*x^3+4110*x^2+4500*x+24375)/(156*x^5+362*x^4+4110*x^3+4525*x^2+24375*x),x, algorithm="ma
xima")

[Out]

log(26*x^2 + 30*x + 325) - log(6*x^2 + 7*x + 75) + log(x)

________________________________________________________________________________________

mupad [B]  time = 0.11, size = 25, normalized size = 1.00 \begin {gather*} \ln \left (x\,\left (26\,x^2+30\,x+325\right )\right )-\ln \left (x^2+\frac {7\,x}{6}+\frac {25}{2}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((4500*x + 4110*x^2 + 364*x^3 + 156*x^4 + 24375)/(24375*x + 4525*x^2 + 4110*x^3 + 362*x^4 + 156*x^5),x)

[Out]

log(x*(30*x + 26*x^2 + 325)) - log((7*x)/6 + x^2 + 25/2)

________________________________________________________________________________________

sympy [A]  time = 0.12, size = 26, normalized size = 1.04 \begin {gather*} - \log {\left (6 x^{2} + 7 x + 75 \right )} + \log {\left (26 x^{3} + 30 x^{2} + 325 x \right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((156*x**4+364*x**3+4110*x**2+4500*x+24375)/(156*x**5+362*x**4+4110*x**3+4525*x**2+24375*x),x)

[Out]

-log(6*x**2 + 7*x + 75) + log(26*x**3 + 30*x**2 + 325*x)

________________________________________________________________________________________