Optimal. Leaf size=30 \[ \frac {\frac {10-e^{3/4}}{x^2}+x}{-\frac {5}{x}+x^2+\log (\log (x))} \]
________________________________________________________________________________________
Rubi [F] time = 2.69, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-10 x+e^{3/4} x-x^4+\left (50-50 x^3-x^6+e^{3/4} \left (-5+4 x^3\right )\right ) \log (x)+\left (-20 x+2 e^{3/4} x+x^4\right ) \log (x) \log (\log (x))}{\left (25 x^2-10 x^5+x^8\right ) \log (x)+\left (-10 x^3+2 x^6\right ) \log (x) \log (\log (x))+x^4 \log (x) \log ^2(\log (x))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (-10+e^{3/4}\right ) x-x^4+\left (50-50 x^3-x^6+e^{3/4} \left (-5+4 x^3\right )\right ) \log (x)+\left (-20 x+2 e^{3/4} x+x^4\right ) \log (x) \log (\log (x))}{\left (25 x^2-10 x^5+x^8\right ) \log (x)+\left (-10 x^3+2 x^6\right ) \log (x) \log (\log (x))+x^4 \log (x) \log ^2(\log (x))} \, dx\\ &=\int \frac {x \left (-10+e^{3/4}-x^3\right )+\log (x) \left (50-50 x^3-x^6+e^{3/4} \left (-5+4 x^3\right )+x \left (-20+2 e^{3/4}+x^3\right ) \log (\log (x))\right )}{x^2 \log (x) \left (5-x^3-x \log (\log (x))\right )^2} \, dx\\ &=\int \left (-\frac {\left (10-e^{3/4}+x^3\right ) \left (x+5 \log (x)+2 x^3 \log (x)\right )}{x^2 \log (x) \left (-5+x^3+x \log (\log (x))\right )^2}+\frac {-20+2 e^{3/4}+x^3}{x^2 \left (-5+x^3+x \log (\log (x))\right )}\right ) \, dx\\ &=-\int \frac {\left (10-e^{3/4}+x^3\right ) \left (x+5 \log (x)+2 x^3 \log (x)\right )}{x^2 \log (x) \left (-5+x^3+x \log (\log (x))\right )^2} \, dx+\int \frac {-20+2 e^{3/4}+x^3}{x^2 \left (-5+x^3+x \log (\log (x))\right )} \, dx\\ &=-\int \left (-\frac {\left (-10+e^{3/4}\right ) \left (x+5 \log (x)+2 x^3 \log (x)\right )}{x^2 \log (x) \left (-5+x^3+x \log (\log (x))\right )^2}+\frac {x \left (x+5 \log (x)+2 x^3 \log (x)\right )}{\log (x) \left (-5+x^3+x \log (\log (x))\right )^2}\right ) \, dx+\int \left (\frac {2 \left (-10+e^{3/4}\right )}{x^2 \left (-5+x^3+x \log (\log (x))\right )}+\frac {x}{-5+x^3+x \log (\log (x))}\right ) \, dx\\ &=-\left (\left (10-e^{3/4}\right ) \int \frac {x+5 \log (x)+2 x^3 \log (x)}{x^2 \log (x) \left (-5+x^3+x \log (\log (x))\right )^2} \, dx\right )-\left (2 \left (10-e^{3/4}\right )\right ) \int \frac {1}{x^2 \left (-5+x^3+x \log (\log (x))\right )} \, dx-\int \frac {x \left (x+5 \log (x)+2 x^3 \log (x)\right )}{\log (x) \left (-5+x^3+x \log (\log (x))\right )^2} \, dx+\int \frac {x}{-5+x^3+x \log (\log (x))} \, dx\\ &=-\left (\left (10-e^{3/4}\right ) \int \left (\frac {5}{x^2 \left (-5+x^3+x \log (\log (x))\right )^2}+\frac {2 x}{\left (-5+x^3+x \log (\log (x))\right )^2}+\frac {1}{x \log (x) \left (-5+x^3+x \log (\log (x))\right )^2}\right ) \, dx\right )-\left (2 \left (10-e^{3/4}\right )\right ) \int \frac {1}{x^2 \left (-5+x^3+x \log (\log (x))\right )} \, dx+\int \frac {x}{-5+x^3+x \log (\log (x))} \, dx-\int \left (\frac {5 x}{\left (-5+x^3+x \log (\log (x))\right )^2}+\frac {2 x^4}{\left (-5+x^3+x \log (\log (x))\right )^2}+\frac {x^2}{\log (x) \left (-5+x^3+x \log (\log (x))\right )^2}\right ) \, dx\\ &=-\left (2 \int \frac {x^4}{\left (-5+x^3+x \log (\log (x))\right )^2} \, dx\right )-5 \int \frac {x}{\left (-5+x^3+x \log (\log (x))\right )^2} \, dx-\left (10-e^{3/4}\right ) \int \frac {1}{x \log (x) \left (-5+x^3+x \log (\log (x))\right )^2} \, dx-\left (2 \left (10-e^{3/4}\right )\right ) \int \frac {x}{\left (-5+x^3+x \log (\log (x))\right )^2} \, dx-\left (2 \left (10-e^{3/4}\right )\right ) \int \frac {1}{x^2 \left (-5+x^3+x \log (\log (x))\right )} \, dx-\left (5 \left (10-e^{3/4}\right )\right ) \int \frac {1}{x^2 \left (-5+x^3+x \log (\log (x))\right )^2} \, dx-\int \frac {x^2}{\log (x) \left (-5+x^3+x \log (\log (x))\right )^2} \, dx+\int \frac {x}{-5+x^3+x \log (\log (x))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 28, normalized size = 0.93 \begin {gather*} \frac {10-e^{3/4}+x^3}{x \left (-5+x^3+x \log (\log (x))\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.50, size = 26, normalized size = 0.87 \begin {gather*} \frac {x^{3} - e^{\frac {3}{4}} + 10}{x^{4} + x^{2} \log \left (\log \relax (x)\right ) - 5 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.13, size = 26, normalized size = 0.87 \begin {gather*} \frac {x^{3} - e^{\frac {3}{4}} + 10}{x^{4} + x^{2} \log \left (\log \relax (x)\right ) - 5 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 27, normalized size = 0.90
method | result | size |
risch | \(-\frac {-x^{3}+{\mathrm e}^{\frac {3}{4}}-10}{x \left (x^{3}+x \ln \left (\ln \relax (x )\right )-5\right )}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.42, size = 101, normalized size = 3.37 \begin {gather*} \frac {x^4\,\ln \relax (x)-5\,{\mathrm {e}}^{3/4}\,{\ln \relax (x)}^2+x\,\left (10\,\ln \relax (x)-{\mathrm {e}}^{3/4}\,\ln \relax (x)\right )-x^3\,\left (2\,{\mathrm {e}}^{3/4}\,{\ln \relax (x)}^2-25\,{\ln \relax (x)}^2\right )+50\,{\ln \relax (x)}^2+2\,x^6\,{\ln \relax (x)}^2}{x\,\left (2\,x^3\,{\ln \relax (x)}^2+x\,\ln \relax (x)+5\,{\ln \relax (x)}^2\right )\,\left (x\,\ln \left (\ln \relax (x)\right )+x^3-5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.32, size = 24, normalized size = 0.80 \begin {gather*} \frac {x^{3} - e^{\frac {3}{4}} + 10}{x^{4} + x^{2} \log {\left (\log {\relax (x )} \right )} - 5 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________