Optimal. Leaf size=27 \[ 4+e^{\frac {3}{2+2 x}} \left (-1+e^{e^4}+x-25 x^2\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.50, antiderivative size = 57, normalized size of antiderivative = 2.11, number of steps used = 16, number of rules used = 9, integrand size = 58, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.155, Rules used = {27, 12, 6741, 6742, 2206, 2210, 2226, 2214, 2209} \begin {gather*} -25 e^{\frac {3}{2 (x+1)}} (x+1)^2+51 e^{\frac {3}{2 (x+1)}} (x+1)-\left (27-e^{e^4}\right ) e^{\frac {3}{2 (x+1)}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 2206
Rule 2209
Rule 2210
Rule 2214
Rule 2226
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-3 e^{e^4+\frac {3}{2+2 x}}+e^{\frac {3}{2+2 x}} \left (5-99 x-123 x^2-100 x^3\right )}{2 (1+x)^2} \, dx\\ &=\frac {1}{2} \int \frac {-3 e^{e^4+\frac {3}{2+2 x}}+e^{\frac {3}{2+2 x}} \left (5-99 x-123 x^2-100 x^3\right )}{(1+x)^2} \, dx\\ &=\frac {1}{2} \int \frac {e^{\frac {3}{2+2 x}} \left (5-3 e^{e^4}-99 x-123 x^2-100 x^3\right )}{(1+x)^2} \, dx\\ &=\frac {1}{2} \int \left (77 e^{\frac {3}{2+2 x}}-100 e^{\frac {3}{2+2 x}} x-\frac {3 e^{\frac {3}{2+2 x}} \left (-27+e^{e^4}\right )}{(1+x)^2}-\frac {153 e^{\frac {3}{2+2 x}}}{1+x}\right ) \, dx\\ &=\frac {77}{2} \int e^{\frac {3}{2+2 x}} \, dx-50 \int e^{\frac {3}{2+2 x}} x \, dx-\frac {153}{2} \int \frac {e^{\frac {3}{2+2 x}}}{1+x} \, dx+\frac {1}{2} \left (3 \left (27-e^{e^4}\right )\right ) \int \frac {e^{\frac {3}{2+2 x}}}{(1+x)^2} \, dx\\ &=-e^{\frac {3}{2 (1+x)}} \left (27-e^{e^4}\right )+\frac {77}{2} e^{\frac {3}{2 (1+x)}} (1+x)+\frac {153}{2} \text {Ei}\left (\frac {3}{2 (1+x)}\right )-50 \int \left (-e^{\frac {3}{2+2 x}}+\frac {1}{2} e^{\frac {3}{2+2 x}} (2+2 x)\right ) \, dx+\frac {231}{2} \int \frac {e^{\frac {3}{2+2 x}}}{2+2 x} \, dx\\ &=-e^{\frac {3}{2 (1+x)}} \left (27-e^{e^4}\right )+\frac {77}{2} e^{\frac {3}{2 (1+x)}} (1+x)+\frac {75}{4} \text {Ei}\left (\frac {3}{2 (1+x)}\right )-25 \int e^{\frac {3}{2+2 x}} (2+2 x) \, dx+50 \int e^{\frac {3}{2+2 x}} \, dx\\ &=-e^{\frac {3}{2 (1+x)}} \left (27-e^{e^4}\right )+\frac {177}{2} e^{\frac {3}{2 (1+x)}} (1+x)-25 e^{\frac {3}{2 (1+x)}} (1+x)^2+\frac {75}{4} \text {Ei}\left (\frac {3}{2 (1+x)}\right )-\frac {75}{2} \int e^{\frac {3}{2+2 x}} \, dx+150 \int \frac {e^{\frac {3}{2+2 x}}}{2+2 x} \, dx\\ &=-e^{\frac {3}{2 (1+x)}} \left (27-e^{e^4}\right )+51 e^{\frac {3}{2 (1+x)}} (1+x)-25 e^{\frac {3}{2 (1+x)}} (1+x)^2-\frac {225}{4} \text {Ei}\left (\frac {3}{2 (1+x)}\right )-\frac {225}{2} \int \frac {e^{\frac {3}{2+2 x}}}{2+2 x} \, dx\\ &=-e^{\frac {3}{2 (1+x)}} \left (27-e^{e^4}\right )+51 e^{\frac {3}{2 (1+x)}} (1+x)-25 e^{\frac {3}{2 (1+x)}} (1+x)^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.22, size = 25, normalized size = 0.93 \begin {gather*} e^{\frac {3}{2 (1+x)}} \left (-1+e^{e^4}+x-25 x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.17, size = 39, normalized size = 1.44 \begin {gather*} -{\left (25 \, x^{2} - x - e^{\left (e^{4}\right )} + 1\right )} e^{\left (\frac {2 \, {\left (x + 1\right )} e^{4} + 3}{2 \, {\left (x + 1\right )}} - e^{4}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.39, size = 64, normalized size = 2.37 \begin {gather*} {\left (x + 1\right )}^{2} {\left (\frac {51 \, e^{\left (\frac {3}{2 \, {\left (x + 1\right )}}\right )}}{x + 1} - \frac {27 \, e^{\left (\frac {3}{2 \, {\left (x + 1\right )}}\right )}}{{\left (x + 1\right )}^{2}} + \frac {e^{\left (\frac {3}{2 \, {\left (x + 1\right )}} + e^{4}\right )}}{{\left (x + 1\right )}^{2}} - 25 \, e^{\left (\frac {3}{2 \, {\left (x + 1\right )}}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.44, size = 21, normalized size = 0.78
method | result | size |
gosper | \(\left ({\mathrm e}^{{\mathrm e}^{4}}-1-25 x^{2}+x \right ) {\mathrm e}^{\frac {3}{2 \left (x +1\right )}}\) | \(21\) |
risch | \(\left ({\mathrm e}^{{\mathrm e}^{4}}-1-25 x^{2}+x \right ) {\mathrm e}^{\frac {3}{2 \left (x +1\right )}}\) | \(21\) |
derivativedivides | \(-25 \,{\mathrm e}^{\frac {3}{2 \left (x +1\right )}} \left (x +1\right )^{2}+51 \,{\mathrm e}^{\frac {3}{2 \left (x +1\right )}} \left (x +1\right )+{\mathrm e}^{\frac {3}{2 \left (x +1\right )}} {\mathrm e}^{{\mathrm e}^{4}}-27 \,{\mathrm e}^{\frac {3}{2 \left (x +1\right )}}\) | \(52\) |
default | \(-25 \,{\mathrm e}^{\frac {3}{2 \left (x +1\right )}} \left (x +1\right )^{2}+51 \,{\mathrm e}^{\frac {3}{2 \left (x +1\right )}} \left (x +1\right )+{\mathrm e}^{\frac {3}{2 \left (x +1\right )}} {\mathrm e}^{{\mathrm e}^{4}}-27 \,{\mathrm e}^{\frac {3}{2 \left (x +1\right )}}\) | \(52\) |
norman | \(\frac {\left ({\mathrm e}^{{\mathrm e}^{4}}-1\right ) {\mathrm e}^{\frac {3}{2 x +2}}+x \,{\mathrm e}^{{\mathrm e}^{4}} {\mathrm e}^{\frac {3}{2 x +2}}-24 x^{2} {\mathrm e}^{\frac {3}{2 x +2}}-25 x^{3} {\mathrm e}^{\frac {3}{2 x +2}}}{x +1}\) | \(69\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -{\left (25 \, x^{2} - x\right )} e^{\left (\frac {3}{2 \, {\left (x + 1\right )}}\right )} - \frac {1}{2} \, {\left (3 \, e^{\left (e^{4}\right )} + 2\right )} \int \frac {e^{\left (\frac {3}{2 \, {\left (x + 1\right )}}\right )}}{x^{2} + 2 \, x + 1}\,{d x} - \frac {5}{3} \, e^{\left (\frac {3}{2 \, {\left (x + 1\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.16, size = 22, normalized size = 0.81 \begin {gather*} {\mathrm {e}}^{\frac {3}{2\,\left (x+1\right )}}\,\left (-25\,x^2+x+{\mathrm {e}}^{{\mathrm {e}}^4}-1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.26, size = 20, normalized size = 0.74 \begin {gather*} \left (- 25 x^{2} + x - 1 + e^{e^{4}}\right ) e^{\frac {3}{2 x + 2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________