Optimal. Leaf size=28 \[ \log \left (5-x+\log (x)+\frac {x}{\log \left (-x^2+\log (5)+\log \left (\log \left (\frac {2}{x}\right )\right )\right )}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 22.63, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {x+2 x^3 \log \left (\frac {2}{x}\right )+\left (\left (-x^3+x \log (5)\right ) \log \left (\frac {2}{x}\right )+x \log \left (\frac {2}{x}\right ) \log \left (\log \left (\frac {2}{x}\right )\right )\right ) \log \left (-x^2+\log (5)+\log \left (\log \left (\frac {2}{x}\right )\right )\right )+\left (\left (-x^2+x^3+(1-x) \log (5)\right ) \log \left (\frac {2}{x}\right )+(1-x) \log \left (\frac {2}{x}\right ) \log \left (\log \left (\frac {2}{x}\right )\right )\right ) \log ^2\left (-x^2+\log (5)+\log \left (\log \left (\frac {2}{x}\right )\right )\right )}{\left (\left (-x^4+x^2 \log (5)\right ) \log \left (\frac {2}{x}\right )+x^2 \log \left (\frac {2}{x}\right ) \log \left (\log \left (\frac {2}{x}\right )\right )\right ) \log \left (-x^2+\log (5)+\log \left (\log \left (\frac {2}{x}\right )\right )\right )+\left (\left (-5 x^3+x^4+\left (5 x-x^2\right ) \log (5)\right ) \log \left (\frac {2}{x}\right )+\left (-x^3+x \log (5)\right ) \log \left (\frac {2}{x}\right ) \log (x)+\left (\left (5 x-x^2\right ) \log \left (\frac {2}{x}\right )+x \log \left (\frac {2}{x}\right ) \log (x)\right ) \log \left (\log \left (\frac {2}{x}\right )\right )\right ) \log ^2\left (-x^2+\log (5)+\log \left (\log \left (\frac {2}{x}\right )\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-x-\log \left (\frac {2}{x}\right ) \left (2 x^3+x \left (-x^2+\log (5)+\log \left (\log \left (\frac {2}{x}\right )\right )\right ) \log \left (-x^2+\log (5)+\log \left (\log \left (\frac {2}{x}\right )\right )\right )+(-1+x) \left (x^2-\log \left (5 \log \left (\frac {2}{x}\right )\right )\right ) \log ^2\left (-x^2+\log (5)+\log \left (\log \left (\frac {2}{x}\right )\right )\right )\right )}{x \log \left (\frac {2}{x}\right ) \left (x^2-\log \left (5 \log \left (\frac {2}{x}\right )\right )\right ) \log \left (-x^2+\log (5)+\log \left (\log \left (\frac {2}{x}\right )\right )\right ) \left (x-(-5+x-\log (x)) \log \left (-x^2+\log (5)+\log \left (\log \left (\frac {2}{x}\right )\right )\right )\right )} \, dx\\ &=\int \left (\frac {-1+x}{x (-5+x-\log (x))}+\frac {-1-2 x^2 \log \left (\frac {2}{x}\right )}{x \log \left (\frac {2}{x}\right ) \left (x^2-\log \left (5 \log \left (\frac {2}{x}\right )\right )\right ) \log \left (-x^2+\log (5)+\log \left (\log \left (\frac {2}{x}\right )\right )\right )}+\frac {\left (1+2 x^2 \log \left (\frac {2}{x}\right )\right ) (-5+x-\log (x))}{x \log \left (\frac {2}{x}\right ) \left (x^2-\log \left (5 \log \left (\frac {2}{x}\right )\right )\right ) \left (-x-5 \log \left (-x^2+\log (5)+\log \left (\log \left (\frac {2}{x}\right )\right )\right )+x \log \left (-x^2+\log (5)+\log \left (\log \left (\frac {2}{x}\right )\right )\right )-\log (x) \log \left (-x^2+\log (5)+\log \left (\log \left (\frac {2}{x}\right )\right )\right )\right )}+\frac {4 x^2-5 \log (5)+x \log (5)+x^2 \log (x)-\log (5) \log (x)-5 \log \left (\log \left (\frac {2}{x}\right )\right )+x \log \left (\log \left (\frac {2}{x}\right )\right )-\log (x) \log \left (\log \left (\frac {2}{x}\right )\right )+\log \left (5 \log \left (\frac {2}{x}\right )\right )-x \log \left (5 \log \left (\frac {2}{x}\right )\right )}{(-5+x-\log (x)) \left (x^2-\log \left (5 \log \left (\frac {2}{x}\right )\right )\right ) \left (-x-5 \log \left (-x^2+\log (5)+\log \left (\log \left (\frac {2}{x}\right )\right )\right )+x \log \left (-x^2+\log (5)+\log \left (\log \left (\frac {2}{x}\right )\right )\right )-\log (x) \log \left (-x^2+\log (5)+\log \left (\log \left (\frac {2}{x}\right )\right )\right )\right )}\right ) \, dx\\ &=\int \frac {-1+x}{x (-5+x-\log (x))} \, dx+\int \frac {-1-2 x^2 \log \left (\frac {2}{x}\right )}{x \log \left (\frac {2}{x}\right ) \left (x^2-\log \left (5 \log \left (\frac {2}{x}\right )\right )\right ) \log \left (-x^2+\log (5)+\log \left (\log \left (\frac {2}{x}\right )\right )\right )} \, dx+\int \frac {\left (1+2 x^2 \log \left (\frac {2}{x}\right )\right ) (-5+x-\log (x))}{x \log \left (\frac {2}{x}\right ) \left (x^2-\log \left (5 \log \left (\frac {2}{x}\right )\right )\right ) \left (-x-5 \log \left (-x^2+\log (5)+\log \left (\log \left (\frac {2}{x}\right )\right )\right )+x \log \left (-x^2+\log (5)+\log \left (\log \left (\frac {2}{x}\right )\right )\right )-\log (x) \log \left (-x^2+\log (5)+\log \left (\log \left (\frac {2}{x}\right )\right )\right )\right )} \, dx+\int \frac {4 x^2-5 \log (5)+x \log (5)+x^2 \log (x)-\log (5) \log (x)-5 \log \left (\log \left (\frac {2}{x}\right )\right )+x \log \left (\log \left (\frac {2}{x}\right )\right )-\log (x) \log \left (\log \left (\frac {2}{x}\right )\right )+\log \left (5 \log \left (\frac {2}{x}\right )\right )-x \log \left (5 \log \left (\frac {2}{x}\right )\right )}{(-5+x-\log (x)) \left (x^2-\log \left (5 \log \left (\frac {2}{x}\right )\right )\right ) \left (-x-5 \log \left (-x^2+\log (5)+\log \left (\log \left (\frac {2}{x}\right )\right )\right )+x \log \left (-x^2+\log (5)+\log \left (\log \left (\frac {2}{x}\right )\right )\right )-\log (x) \log \left (-x^2+\log (5)+\log \left (\log \left (\frac {2}{x}\right )\right )\right )\right )} \, dx\\ &=\log (5-x+\log (x))+\int \left (-\frac {2 x}{\left (x^2-\log \left (5 \log \left (\frac {2}{x}\right )\right )\right ) \log \left (-x^2+\log (5)+\log \left (\log \left (\frac {2}{x}\right )\right )\right )}-\frac {1}{x \log \left (\frac {2}{x}\right ) \left (x^2-\log \left (5 \log \left (\frac {2}{x}\right )\right )\right ) \log \left (-x^2+\log (5)+\log \left (\log \left (\frac {2}{x}\right )\right )\right )}\right ) \, dx+\int \frac {\left (1+2 x^2 \log \left (\frac {2}{x}\right )\right ) (5-x+\log (x))}{x \log \left (\frac {2}{x}\right ) \left (x^2-\log \left (5 \log \left (\frac {2}{x}\right )\right )\right ) \left (x-(-5+x-\log (x)) \log \left (-x^2+\log (5)+\log \left (\log \left (\frac {2}{x}\right )\right )\right )\right )} \, dx+\int \frac {4 x^2-5 \log (5)+x \log (5)+\log (x) \left (x^2-\log (5)-\log \left (\log \left (\frac {2}{x}\right )\right )\right )+(-5+x) \log \left (\log \left (\frac {2}{x}\right )\right )+\log \left (5 \log \left (\frac {2}{x}\right )\right )-x \log \left (5 \log \left (\frac {2}{x}\right )\right )}{(5-x+\log (x)) \left (x^2-\log \left (5 \log \left (\frac {2}{x}\right )\right )\right ) \left (x-(-5+x-\log (x)) \log \left (-x^2+\log (5)+\log \left (\log \left (\frac {2}{x}\right )\right )\right )\right )} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 0.37, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x+2 x^3 \log \left (\frac {2}{x}\right )+\left (\left (-x^3+x \log (5)\right ) \log \left (\frac {2}{x}\right )+x \log \left (\frac {2}{x}\right ) \log \left (\log \left (\frac {2}{x}\right )\right )\right ) \log \left (-x^2+\log (5)+\log \left (\log \left (\frac {2}{x}\right )\right )\right )+\left (\left (-x^2+x^3+(1-x) \log (5)\right ) \log \left (\frac {2}{x}\right )+(1-x) \log \left (\frac {2}{x}\right ) \log \left (\log \left (\frac {2}{x}\right )\right )\right ) \log ^2\left (-x^2+\log (5)+\log \left (\log \left (\frac {2}{x}\right )\right )\right )}{\left (\left (-x^4+x^2 \log (5)\right ) \log \left (\frac {2}{x}\right )+x^2 \log \left (\frac {2}{x}\right ) \log \left (\log \left (\frac {2}{x}\right )\right )\right ) \log \left (-x^2+\log (5)+\log \left (\log \left (\frac {2}{x}\right )\right )\right )+\left (\left (-5 x^3+x^4+\left (5 x-x^2\right ) \log (5)\right ) \log \left (\frac {2}{x}\right )+\left (-x^3+x \log (5)\right ) \log \left (\frac {2}{x}\right ) \log (x)+\left (\left (5 x-x^2\right ) \log \left (\frac {2}{x}\right )+x \log \left (\frac {2}{x}\right ) \log (x)\right ) \log \left (\log \left (\frac {2}{x}\right )\right )\right ) \log ^2\left (-x^2+\log (5)+\log \left (\log \left (\frac {2}{x}\right )\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.81, size = 85, normalized size = 3.04 \begin {gather*} \log \left (x - \log \relax (2) + \log \left (\frac {2}{x}\right ) - 5\right ) + \log \left (\frac {{\left (x - \log \relax (2) + \log \left (\frac {2}{x}\right ) - 5\right )} \log \left (-x^{2} + \log \relax (5) + \log \left (\log \left (\frac {2}{x}\right )\right )\right ) - x}{x - \log \relax (2) + \log \left (\frac {2}{x}\right ) - 5}\right ) - \log \left (\log \left (-x^{2} + \log \relax (5) + \log \left (\log \left (\frac {2}{x}\right )\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.65, size = 85, normalized size = 3.04 \begin {gather*} \log \left (x \log \left (-x^{2} + \log \relax (5) + \log \left (\log \relax (2) - \log \relax (x)\right )\right ) - \log \left (-x^{2} + \log \relax (5) + \log \left (\log \relax (2) - \log \relax (x)\right )\right ) \log \relax (x) - x - 5 \, \log \left (-x^{2} + \log \relax (5) + \log \left (\log \relax (2) - \log \relax (x)\right )\right )\right ) - \log \left (\log \left (-x^{2} + \log \relax (5) + \log \left (\log \relax (2) - \log \relax (x)\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 1.63, size = 61, normalized size = 2.18
method | result | size |
risch | \(\ln \left (\ln \relax (x )-x +5\right )-\ln \left (\ln \left (\ln \left (\ln \relax (2)-\ln \relax (x )\right )+\ln \relax (5)-x^{2}\right )\right )+\ln \left (-\frac {x}{-\ln \relax (x )+x -5}+\ln \left (\ln \left (\ln \relax (2)-\ln \relax (x )\right )+\ln \relax (5)-x^{2}\right )\right )\) | \(61\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.61, size = 69, normalized size = 2.46 \begin {gather*} \log \left (-x + \log \relax (x) + 5\right ) + \log \left (\frac {{\left (x - \log \relax (x) - 5\right )} \log \left (-x^{2} + \log \relax (5) + \log \left (\log \relax (2) - \log \relax (x)\right )\right ) - x}{x - \log \relax (x) - 5}\right ) - \log \left (\log \left (-x^{2} + \log \relax (5) + \log \left (\log \relax (2) - \log \relax (x)\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {x-{\ln \left (\ln \left (\ln \left (\frac {2}{x}\right )\right )+\ln \relax (5)-x^2\right )}^2\,\left (\ln \left (\frac {2}{x}\right )\,\left (\ln \relax (5)\,\left (x-1\right )+x^2-x^3\right )+\ln \left (\ln \left (\frac {2}{x}\right )\right )\,\ln \left (\frac {2}{x}\right )\,\left (x-1\right )\right )+\ln \left (\ln \left (\ln \left (\frac {2}{x}\right )\right )+\ln \relax (5)-x^2\right )\,\left (\ln \left (\frac {2}{x}\right )\,\left (x\,\ln \relax (5)-x^3\right )+x\,\ln \left (\ln \left (\frac {2}{x}\right )\right )\,\ln \left (\frac {2}{x}\right )\right )+2\,x^3\,\ln \left (\frac {2}{x}\right )}{\left (\ln \left (\ln \left (\frac {2}{x}\right )\right )\,\left (\ln \left (\frac {2}{x}\right )\,\left (5\,x-x^2\right )+x\,\ln \left (\frac {2}{x}\right )\,\ln \relax (x)\right )+\ln \left (\frac {2}{x}\right )\,\left (\ln \relax (5)\,\left (5\,x-x^2\right )-5\,x^3+x^4\right )+\ln \left (\frac {2}{x}\right )\,\ln \relax (x)\,\left (x\,\ln \relax (5)-x^3\right )\right )\,{\ln \left (\ln \left (\ln \left (\frac {2}{x}\right )\right )+\ln \relax (5)-x^2\right )}^2+\left (\ln \left (\frac {2}{x}\right )\,\left (x^2\,\ln \relax (5)-x^4\right )+x^2\,\ln \left (\ln \left (\frac {2}{x}\right )\right )\,\ln \left (\frac {2}{x}\right )\right )\,\ln \left (\ln \left (\ln \left (\frac {2}{x}\right )\right )+\ln \relax (5)-x^2\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________