Optimal. Leaf size=36 \[ \log \left (\frac {1}{5} \left (-e^{-\frac {6-x}{x}+x}-x+e^{x^2} (-e+x)\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 30.73, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {x^2+e^{\frac {-6+x+x^2}{x}} \left (6+x^2\right )+e^{x^2} \left (-x^2+2 e x^3-2 x^4\right )}{e^{\frac {-6+x+x^2}{x}} x^2+x^3+e^{x^2} \left (e x^2-x^3\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {-1+2 e x-2 x^2}{e-x}+\frac {6 e^{2+x}-6 e^{1+x} x+e^{1+\frac {6}{x}} x^2+e^{1+x} (1+e) x^2-e^{1+x} (1+2 e) x^3-2 e^{1+\frac {6}{x}} x^4+2 e^{1+x} x^4+2 e^{6/x} x^5}{(e-x) x^2 \left (e^{1+x}+e^{1+\frac {6}{x}+x^2}+e^{6/x} x-e^{\frac {6}{x}+x^2} x\right )}\right ) \, dx\\ &=\int \frac {-1+2 e x-2 x^2}{e-x} \, dx+\int \frac {6 e^{2+x}-6 e^{1+x} x+e^{1+\frac {6}{x}} x^2+e^{1+x} (1+e) x^2-e^{1+x} (1+2 e) x^3-2 e^{1+\frac {6}{x}} x^4+2 e^{1+x} x^4+2 e^{6/x} x^5}{(e-x) x^2 \left (e^{1+x}+e^{1+\frac {6}{x}+x^2}+e^{6/x} x-e^{\frac {6}{x}+x^2} x\right )} \, dx\\ &=\int \left (2 x+\frac {1}{-e+x}\right ) \, dx+\int \frac {2 e^{6/x} x^5+e^{2+x} \left (6+x^2-2 x^3\right )+e^{1+x} x \left (-6+x-x^2+2 x^3\right )+e^{1+\frac {6}{x}} \left (x^2-2 x^4\right )}{(e-x) x^2 \left (e^{1+x}+e^{1+\frac {6}{x}+x^2}+e^{6/x} x-e^{\frac {6}{x}+x^2} x\right )} \, dx\\ &=x^2+\log (e-x)+\int \left (\frac {6 e^{2+x}-6 e^{1+x} x+e^{1+\frac {6}{x}} x^2+e^{1+x} (1+e) x^2-e^{1+x} (1+2 e) x^3-2 e^{1+\frac {6}{x}} x^4+2 e^{1+x} x^4+2 e^{6/x} x^5}{e^2 (e-x) \left (e^{1+x}+e^{1+\frac {6}{x}+x^2}+e^{6/x} x-e^{\frac {6}{x}+x^2} x\right )}+\frac {6 e^{2+x}-6 e^{1+x} x+e^{1+\frac {6}{x}} x^2+e^{1+x} (1+e) x^2-e^{1+x} (1+2 e) x^3-2 e^{1+\frac {6}{x}} x^4+2 e^{1+x} x^4+2 e^{6/x} x^5}{e x^2 \left (e^{1+x}+e^{1+\frac {6}{x}+x^2}+e^{6/x} x-e^{\frac {6}{x}+x^2} x\right )}+\frac {6 e^{2+x}-6 e^{1+x} x+e^{1+\frac {6}{x}} x^2+e^{1+x} (1+e) x^2-e^{1+x} (1+2 e) x^3-2 e^{1+\frac {6}{x}} x^4+2 e^{1+x} x^4+2 e^{6/x} x^5}{e^2 x \left (e^{1+x}+e^{1+\frac {6}{x}+x^2}+e^{6/x} x-e^{\frac {6}{x}+x^2} x\right )}\right ) \, dx\\ &=x^2+\log (e-x)+\frac {\int \frac {6 e^{2+x}-6 e^{1+x} x+e^{1+\frac {6}{x}} x^2+e^{1+x} (1+e) x^2-e^{1+x} (1+2 e) x^3-2 e^{1+\frac {6}{x}} x^4+2 e^{1+x} x^4+2 e^{6/x} x^5}{(e-x) \left (e^{1+x}+e^{1+\frac {6}{x}+x^2}+e^{6/x} x-e^{\frac {6}{x}+x^2} x\right )} \, dx}{e^2}+\frac {\int \frac {6 e^{2+x}-6 e^{1+x} x+e^{1+\frac {6}{x}} x^2+e^{1+x} (1+e) x^2-e^{1+x} (1+2 e) x^3-2 e^{1+\frac {6}{x}} x^4+2 e^{1+x} x^4+2 e^{6/x} x^5}{x \left (e^{1+x}+e^{1+\frac {6}{x}+x^2}+e^{6/x} x-e^{\frac {6}{x}+x^2} x\right )} \, dx}{e^2}+\frac {\int \frac {6 e^{2+x}-6 e^{1+x} x+e^{1+\frac {6}{x}} x^2+e^{1+x} (1+e) x^2-e^{1+x} (1+2 e) x^3-2 e^{1+\frac {6}{x}} x^4+2 e^{1+x} x^4+2 e^{6/x} x^5}{x^2 \left (e^{1+x}+e^{1+\frac {6}{x}+x^2}+e^{6/x} x-e^{\frac {6}{x}+x^2} x\right )} \, dx}{e}\\ &=x^2+\log (e-x)+\frac {\int \left (-\frac {6 e^{1+x}}{e^{1+x}+e^{1+\frac {6}{x}+x^2}+e^{6/x} x-e^{\frac {6}{x}+x^2} x}+\frac {6 e^{2+x}}{x \left (e^{1+x}+e^{1+\frac {6}{x}+x^2}+e^{6/x} x-e^{\frac {6}{x}+x^2} x\right )}+\frac {e^{1+\frac {6}{x}} x}{e^{1+x}+e^{1+\frac {6}{x}+x^2}+e^{6/x} x-e^{\frac {6}{x}+x^2} x}+\frac {e^{1+x} (1+e) x}{e^{1+x}+e^{1+\frac {6}{x}+x^2}+e^{6/x} x-e^{\frac {6}{x}+x^2} x}-\frac {e^{1+x} (1+2 e) x^2}{e^{1+x}+e^{1+\frac {6}{x}+x^2}+e^{6/x} x-e^{\frac {6}{x}+x^2} x}-\frac {2 e^{1+\frac {6}{x}} x^3}{e^{1+x}+e^{1+\frac {6}{x}+x^2}+e^{6/x} x-e^{\frac {6}{x}+x^2} x}+\frac {2 e^{1+x} x^3}{e^{1+x}+e^{1+\frac {6}{x}+x^2}+e^{6/x} x-e^{\frac {6}{x}+x^2} x}-\frac {2 e^{6/x} x^4}{-e^{1+x}-e^{1+\frac {6}{x}+x^2}-e^{6/x} x+e^{\frac {6}{x}+x^2} x}\right ) \, dx}{e^2}+\frac {\int \frac {2 e^{6/x} x^5+e^{2+x} \left (6+x^2-2 x^3\right )+e^{1+x} x \left (-6+x-x^2+2 x^3\right )+e^{1+\frac {6}{x}} \left (x^2-2 x^4\right )}{(e-x) \left (e^{1+x}+e^{1+\frac {6}{x}+x^2}+e^{6/x} x-e^{\frac {6}{x}+x^2} x\right )} \, dx}{e^2}+\frac {\int \left (\frac {e^{1+\frac {6}{x}}}{e^{1+x}+e^{1+\frac {6}{x}+x^2}+e^{6/x} x-e^{\frac {6}{x}+x^2} x}+\frac {e^{1+x} (1+e)}{e^{1+x}+e^{1+\frac {6}{x}+x^2}+e^{6/x} x-e^{\frac {6}{x}+x^2} x}+\frac {6 e^{2+x}}{x^2 \left (e^{1+x}+e^{1+\frac {6}{x}+x^2}+e^{6/x} x-e^{\frac {6}{x}+x^2} x\right )}-\frac {6 e^{1+x}}{x \left (e^{1+x}+e^{1+\frac {6}{x}+x^2}+e^{6/x} x-e^{\frac {6}{x}+x^2} x\right )}-\frac {e^{1+x} (1+2 e) x}{e^{1+x}+e^{1+\frac {6}{x}+x^2}+e^{6/x} x-e^{\frac {6}{x}+x^2} x}-\frac {2 e^{1+\frac {6}{x}} x^2}{e^{1+x}+e^{1+\frac {6}{x}+x^2}+e^{6/x} x-e^{\frac {6}{x}+x^2} x}+\frac {2 e^{1+x} x^2}{e^{1+x}+e^{1+\frac {6}{x}+x^2}+e^{6/x} x-e^{\frac {6}{x}+x^2} x}-\frac {2 e^{6/x} x^3}{-e^{1+x}-e^{1+\frac {6}{x}+x^2}-e^{6/x} x+e^{\frac {6}{x}+x^2} x}\right ) \, dx}{e}\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 4.29, size = 28, normalized size = 0.78 \begin {gather*} \log \left (e^{1-\frac {6}{x}+x}+e^{1+x^2}+x-e^{x^2} x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 47, normalized size = 1.31 \begin {gather*} \log \left (x - e\right ) + \log \left (-\frac {{\left (x - e\right )} e^{\left (x^{2}\right )} - x - e^{\left (\frac {x^{2} + x - 6}{x}\right )}}{x - e}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 27, normalized size = 0.75 \begin {gather*} \log \left (-x e^{\left (x^{2}\right )} + x + e^{\left (x^{2} + 1\right )} + e^{\left (\frac {x^{2} + x - 6}{x}\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.29, size = 29, normalized size = 0.81
method | result | size |
norman | \(\ln \left ({\mathrm e} \,{\mathrm e}^{x^{2}}-{\mathrm e}^{x^{2}} x +{\mathrm e}^{\frac {x^{2}+x -6}{x}}+x \right )\) | \(29\) |
risch | \(x -\frac {6}{x}-\frac {x^{2}+x -6}{x}+\ln \left ({\mathrm e}^{x^{2}+1}-{\mathrm e}^{x^{2}} x +{\mathrm e}^{\frac {\left (3+x \right ) \left (x -2\right )}{x}}+x \right )\) | \(46\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 57, normalized size = 1.58 \begin {gather*} \log \left (x - e\right ) + \log \left (\frac {{\left ({\left (x - e\right )} e^{\left (x^{2} + \frac {6}{x}\right )} - x e^{\frac {6}{x}} - e^{\left (x + 1\right )}\right )} e^{\left (-\frac {6}{x}\right )}}{x - e}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.21, size = 25, normalized size = 0.69 \begin {gather*} \ln \left (x+{\mathrm {e}}^{x-\frac {6}{x}+1}+{\mathrm {e}}^{x^2+1}-x\,{\mathrm {e}}^{x^2}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.46, size = 27, normalized size = 0.75 \begin {gather*} \log {\left (- x e^{x^{2}} + x + e e^{x^{2}} + e^{\frac {x^{2} + x - 6}{x}} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________