Optimal. Leaf size=23 \[ \frac {1}{\log \left (1-10 e^{e^x+x} (5-5 (2-x))\right )} \]
________________________________________________________________________________________
Rubi [F] time = 3.10, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{e^x+x} \left (e^x (50-50 x)-50 x\right )}{\left (-1+e^{e^x+x} (-50+50 x)\right ) \log ^2\left (1+e^{e^x+x} (50-50 x)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {50 e^{e^x+x} \left (-e^x+x+e^x x\right )}{\left (1-e^{e^x+x} (-50+50 x)\right ) \log ^2\left (1+e^{e^x+x} (50-50 x)\right )} \, dx\\ &=50 \int \frac {e^{e^x+x} \left (-e^x+x+e^x x\right )}{\left (1-e^{e^x+x} (-50+50 x)\right ) \log ^2\left (1+e^{e^x+x} (50-50 x)\right )} \, dx\\ &=50 \int \left (-\frac {e^x}{50 \log ^2\left (1-50 e^{e^x+x} (-1+x)\right )}-\frac {e^x \left (1+50 e^{e^x} x\right )}{50 \left (-1-50 e^{e^x+x}+50 e^{e^x+x} x\right ) \log ^2\left (1-50 e^{e^x+x} (-1+x)\right )}\right ) \, dx\\ &=-\int \frac {e^x}{\log ^2\left (1-50 e^{e^x+x} (-1+x)\right )} \, dx-\int \frac {e^x \left (1+50 e^{e^x} x\right )}{\left (-1-50 e^{e^x+x}+50 e^{e^x+x} x\right ) \log ^2\left (1-50 e^{e^x+x} (-1+x)\right )} \, dx\\ &=-\int \left (\frac {e^x}{\left (-1-50 e^{e^x+x}+50 e^{e^x+x} x\right ) \log ^2\left (1-50 e^{e^x+x} (-1+x)\right )}+\frac {50 e^{e^x+x} x}{\left (-1-50 e^{e^x+x}+50 e^{e^x+x} x\right ) \log ^2\left (1-50 e^{e^x+x} (-1+x)\right )}\right ) \, dx-\int \frac {e^x}{\log ^2\left (1-50 e^{e^x+x} (-1+x)\right )} \, dx\\ &=-\left (50 \int \frac {e^{e^x+x} x}{\left (-1-50 e^{e^x+x}+50 e^{e^x+x} x\right ) \log ^2\left (1-50 e^{e^x+x} (-1+x)\right )} \, dx\right )-\int \frac {e^x}{\log ^2\left (1-50 e^{e^x+x} (-1+x)\right )} \, dx-\int \frac {e^x}{\left (-1-50 e^{e^x+x}+50 e^{e^x+x} x\right ) \log ^2\left (1-50 e^{e^x+x} (-1+x)\right )} \, dx\\ &=-\left (50 \int \frac {e^{e^x+x} x}{\left (-1+50 e^{e^x+x} (-1+x)\right ) \log ^2\left (1-50 e^{e^x+x} (-1+x)\right )} \, dx\right )-\int \frac {e^x}{\log ^2\left (1-50 e^{e^x+x} (-1+x)\right )} \, dx-\int \frac {e^x}{\left (-1+50 e^{e^x+x} (-1+x)\right ) \log ^2\left (1-50 e^{e^x+x} (-1+x)\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.39, size = 17, normalized size = 0.74 \begin {gather*} \frac {1}{\log \left (1-50 e^{e^x+x} (-1+x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 15, normalized size = 0.65 \begin {gather*} \frac {1}{\log \left (-50 \, {\left (x - 1\right )} e^{\left (x + e^{x}\right )} + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 20, normalized size = 0.87 \begin {gather*} \frac {1}{\log \left (-50 \, x e^{\left (x + e^{x}\right )} + 50 \, e^{\left (x + e^{x}\right )} + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 17, normalized size = 0.74
method | result | size |
risch | \(\frac {1}{\ln \left (\left (-50 x +50\right ) {\mathrm e}^{{\mathrm e}^{x}+x}+1\right )}\) | \(17\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.44, size = 15, normalized size = 0.65 \begin {gather*} \frac {1}{\log \left (-50 \, {\left (x - 1\right )} e^{\left (x + e^{x}\right )} + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.32, size = 17, normalized size = 0.74 \begin {gather*} \frac {1}{\ln \left (1-{\mathrm {e}}^{x+{\mathrm {e}}^x}\,\left (50\,x-50\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.45, size = 15, normalized size = 0.65 \begin {gather*} \frac {1}{\log {\left (\left (50 - 50 x\right ) e^{x + e^{x}} + 1 \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________