Optimal. Leaf size=29 \[ 2+\frac {1}{4 \left (e^x+\frac {e^{4+2 x}}{x}-x\right )^4 x^2} \]
________________________________________________________________________________________
Rubi [F] time = 3.37, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {3 x^3+e^{4+2 x} \left (x-4 x^2\right )+e^x \left (-x^2-2 x^3\right )}{2 e^{20+10 x}+2 e^{5 x} x^5-10 e^{4 x} x^6+20 e^{3 x} x^7-20 e^{2 x} x^8+10 e^x x^9-2 x^{10}+e^{16+8 x} \left (10 e^x x-10 x^2\right )+e^{12+6 x} \left (20 e^{2 x} x^2-40 e^x x^3+20 x^4\right )+e^{8+4 x} \left (20 e^{3 x} x^3-60 e^{2 x} x^4+60 e^x x^5-20 x^6\right )+e^{4+2 x} \left (10 e^{4 x} x^4-40 e^{3 x} x^5+60 e^{2 x} x^6-40 e^x x^7+10 x^8\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x \left (3 x^2-e^x x (1+2 x)-e^{4+2 x} (-1+4 x)\right )}{2 \left (e^{4+2 x}+e^x x-x^2\right )^5} \, dx\\ &=\frac {1}{2} \int \frac {x \left (3 x^2-e^x x (1+2 x)-e^{4+2 x} (-1+4 x)\right )}{\left (e^{4+2 x}+e^x x-x^2\right )^5} \, dx\\ &=\frac {1}{2} \int \left (\frac {2 \left (e^x-2 x\right ) (-1+x) x^2}{\left (e^{4+2 x}+e^x x-x^2\right )^5}-\frac {x (-1+4 x)}{\left (-e^{4+2 x}-e^x x+x^2\right )^4}\right ) \, dx\\ &=-\left (\frac {1}{2} \int \frac {x (-1+4 x)}{\left (-e^{4+2 x}-e^x x+x^2\right )^4} \, dx\right )+\int \frac {\left (e^x-2 x\right ) (-1+x) x^2}{\left (e^{4+2 x}+e^x x-x^2\right )^5} \, dx\\ &=-\left (\frac {1}{2} \int \left (-\frac {x}{\left (-e^{4+2 x}-e^x x+x^2\right )^4}+\frac {4 x^2}{\left (-e^{4+2 x}-e^x x+x^2\right )^4}\right ) \, dx\right )+\int \left (-\frac {\left (e^x-2 x\right ) x^2}{\left (e^{4+2 x}+e^x x-x^2\right )^5}+\frac {\left (e^x-2 x\right ) x^3}{\left (e^{4+2 x}+e^x x-x^2\right )^5}\right ) \, dx\\ &=\frac {1}{2} \int \frac {x}{\left (-e^{4+2 x}-e^x x+x^2\right )^4} \, dx-2 \int \frac {x^2}{\left (-e^{4+2 x}-e^x x+x^2\right )^4} \, dx-\int \frac {\left (e^x-2 x\right ) x^2}{\left (e^{4+2 x}+e^x x-x^2\right )^5} \, dx+\int \frac {\left (e^x-2 x\right ) x^3}{\left (e^{4+2 x}+e^x x-x^2\right )^5} \, dx\\ &=\frac {1}{2} \int \frac {x}{\left (-e^{4+2 x}-e^x x+x^2\right )^4} \, dx-2 \int \frac {x^2}{\left (-e^{4+2 x}-e^x x+x^2\right )^4} \, dx-\int \left (\frac {e^x x^2}{\left (e^{4+2 x}+e^x x-x^2\right )^5}+\frac {2 x^3}{\left (-e^{4+2 x}-e^x x+x^2\right )^5}\right ) \, dx+\int \left (\frac {e^x x^3}{\left (e^{4+2 x}+e^x x-x^2\right )^5}+\frac {2 x^4}{\left (-e^{4+2 x}-e^x x+x^2\right )^5}\right ) \, dx\\ &=\frac {1}{2} \int \frac {x}{\left (-e^{4+2 x}-e^x x+x^2\right )^4} \, dx-2 \int \frac {x^3}{\left (-e^{4+2 x}-e^x x+x^2\right )^5} \, dx+2 \int \frac {x^4}{\left (-e^{4+2 x}-e^x x+x^2\right )^5} \, dx-2 \int \frac {x^2}{\left (-e^{4+2 x}-e^x x+x^2\right )^4} \, dx-\int \frac {e^x x^2}{\left (e^{4+2 x}+e^x x-x^2\right )^5} \, dx+\int \frac {e^x x^3}{\left (e^{4+2 x}+e^x x-x^2\right )^5} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.52, size = 27, normalized size = 0.93 \begin {gather*} \frac {x^2}{4 \left (e^{4+2 x}+e^x x-x^2\right )^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.65, size = 136, normalized size = 4.69 \begin {gather*} \frac {x^{2}}{4 \, {\left (x^{8} - 4 \, x^{7} e^{x} - 2 \, {\left (2 \, x^{2} e^{12} - 3 \, x^{2} e^{8}\right )} e^{\left (6 \, x\right )} - 4 \, {\left (3 \, x^{3} e^{8} - x^{3} e^{4}\right )} e^{\left (5 \, x\right )} + {\left (6 \, x^{4} e^{8} - 12 \, x^{4} e^{4} + x^{4}\right )} e^{\left (4 \, x\right )} + 4 \, {\left (3 \, x^{5} e^{4} - x^{5}\right )} e^{\left (3 \, x\right )} - 2 \, {\left (2 \, x^{6} e^{4} - 3 \, x^{6}\right )} e^{\left (2 \, x\right )} + 4 \, x e^{\left (7 \, x + 12\right )} + e^{\left (8 \, x + 16\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 4.15, size = 147, normalized size = 5.07 \begin {gather*} \frac {x^{2}}{2 \, {\left (x^{8} - 4 \, x^{7} e^{x} + 6 \, x^{6} e^{\left (2 \, x\right )} - 4 \, x^{6} e^{\left (2 \, x + 4\right )} - 4 \, x^{5} e^{\left (3 \, x\right )} + 12 \, x^{5} e^{\left (3 \, x + 4\right )} + x^{4} e^{\left (4 \, x\right )} + 6 \, x^{4} e^{\left (4 \, x + 8\right )} - 12 \, x^{4} e^{\left (4 \, x + 4\right )} - 12 \, x^{3} e^{\left (5 \, x + 8\right )} + 4 \, x^{3} e^{\left (5 \, x + 4\right )} - 4 \, x^{2} e^{\left (6 \, x + 12\right )} + 6 \, x^{2} e^{\left (6 \, x + 8\right )} + 4 \, x e^{\left (7 \, x + 12\right )} + e^{\left (8 \, x + 16\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 24, normalized size = 0.83
method | result | size |
risch | \(\frac {x^{2}}{4 \left ({\mathrm e}^{x} x -x^{2}+{\mathrm e}^{2 x +4}\right )^{4}}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.84, size = 117, normalized size = 4.03 \begin {gather*} \frac {x^{2}}{4 \, {\left (x^{8} - 2 \, x^{6} {\left (2 \, e^{4} - 3\right )} e^{\left (2 \, x\right )} - 4 \, x^{7} e^{x} + 4 \, x^{5} {\left (3 \, e^{4} - 1\right )} e^{\left (3 \, x\right )} + x^{4} {\left (6 \, e^{8} - 12 \, e^{4} + 1\right )} e^{\left (4 \, x\right )} - 4 \, x^{3} {\left (3 \, e^{8} - e^{4}\right )} e^{\left (5 \, x\right )} - 2 \, x^{2} {\left (2 \, e^{12} - 3 \, e^{8}\right )} e^{\left (6 \, x\right )} + 4 \, x e^{\left (7 \, x + 12\right )} + e^{\left (8 \, x + 16\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {{\mathrm {e}}^{2\,x+4}\,\left (x-4\,x^2\right )-{\mathrm {e}}^x\,\left (2\,x^3+x^2\right )+3\,x^3}{2\,{\mathrm {e}}^{10\,x+20}+{\mathrm {e}}^{2\,x+4}\,\left (10\,x^4\,{\mathrm {e}}^{4\,x}-40\,x^7\,{\mathrm {e}}^x-40\,x^5\,{\mathrm {e}}^{3\,x}+60\,x^6\,{\mathrm {e}}^{2\,x}+10\,x^8\right )+10\,x^9\,{\mathrm {e}}^x+{\mathrm {e}}^{6\,x+12}\,\left (20\,x^2\,{\mathrm {e}}^{2\,x}-40\,x^3\,{\mathrm {e}}^x+20\,x^4\right )+{\mathrm {e}}^{8\,x+16}\,\left (10\,x\,{\mathrm {e}}^x-10\,x^2\right )+2\,x^5\,{\mathrm {e}}^{5\,x}-10\,x^6\,{\mathrm {e}}^{4\,x}+20\,x^7\,{\mathrm {e}}^{3\,x}-20\,x^8\,{\mathrm {e}}^{2\,x}+{\mathrm {e}}^{4\,x+8}\,\left (60\,x^5\,{\mathrm {e}}^x+20\,x^3\,{\mathrm {e}}^{3\,x}-60\,x^4\,{\mathrm {e}}^{2\,x}-20\,x^6\right )-2\,x^{10}} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________