Optimal. Leaf size=28 \[ 1-e^{2 x^4}+e^{\frac {(3+x+x \log (5)) (1+\log (x))}{x}} \]
________________________________________________________________________________________
Rubi [F] time = 0.35, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-8 e^{2 x^4} x^5+e^{\frac {3+x+x \log (5)+(3+x+x \log (5)) \log (x)}{x}} (x+x \log (5)-3 \log (x))}{x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-8 e^{2 x^4} x^3+5 e^{1+\frac {3}{x}} x^{-1+\frac {3}{x}+\log (5)} (x (1+\log (5))-3 \log (x))\right ) \, dx\\ &=5 \int e^{1+\frac {3}{x}} x^{-1+\frac {3}{x}+\log (5)} (x (1+\log (5))-3 \log (x)) \, dx-8 \int e^{2 x^4} x^3 \, dx\\ &=-e^{2 x^4}+5 \int \left (e^{1+\frac {3}{x}} x^{\frac {3}{x}+\log (5)} (1+\log (5))-3 e^{1+\frac {3}{x}} x^{-1+\frac {3}{x}+\log (5)} \log (x)\right ) \, dx\\ &=-e^{2 x^4}-15 \int e^{1+\frac {3}{x}} x^{-1+\frac {3}{x}+\log (5)} \log (x) \, dx+(5 (1+\log (5))) \int e^{1+\frac {3}{x}} x^{\frac {3}{x}+\log (5)} \, dx\\ &=-e^{2 x^4}+15 \int \frac {\int e^{1+\frac {3}{x}} x^{-1+\frac {3}{x}+\log (5)} \, dx}{x} \, dx+(5 (1+\log (5))) \int e^{1+\frac {3}{x}} x^{\frac {3}{x}+\log (5)} \, dx-(15 \log (x)) \int e^{1+\frac {3}{x}} x^{-1+\frac {3}{x}+\log (5)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.20, size = 35, normalized size = 1.25 \begin {gather*} -e^{2 x^4}+5 e^{1+\frac {3}{x}} x^{1+\frac {3+x \log (5)}{x}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 31, normalized size = 1.11 \begin {gather*} -e^{\left (2 \, x^{4}\right )} + e^{\left (\frac {x \log \relax (5) + {\left (x \log \relax (5) + x + 3\right )} \log \relax (x) + x + 3}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 35, normalized size = 1.25 \begin {gather*} -e^{\left (2 \, x^{4}\right )} + e^{\left (\frac {x \log \relax (5) \log \relax (x) + x \log \relax (5) + x \log \relax (x) + x + 3 \, \log \relax (x) + 3}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.13, size = 26, normalized size = 0.93
method | result | size |
risch | \({\mathrm e}^{\frac {\left (\ln \relax (x )+1\right ) \left (x \ln \relax (5)+3+x \right )}{x}}-{\mathrm e}^{2 x^{4}}\) | \(26\) |
default | \({\mathrm e}^{\frac {\left (x \ln \relax (5)+3+x \right ) \ln \relax (x )+x \ln \relax (5)+3+x}{x}}-{\mathrm e}^{2 x^{4}}\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.53, size = 32, normalized size = 1.14 \begin {gather*} 5 \, x e^{\left (\log \relax (5) \log \relax (x) + \frac {3 \, \log \relax (x)}{x} + \frac {3}{x} + 1\right )} - e^{\left (2 \, x^{4}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.09, size = 31, normalized size = 1.11 \begin {gather*} 5\,x\,x^{3/x}\,x^{\ln \relax (5)}\,\mathrm {e}\,{\mathrm {e}}^{3/x}-{\mathrm {e}}^{2\,x^4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.49, size = 29, normalized size = 1.04 \begin {gather*} - e^{2 x^{4}} + e^{\frac {x + x \log {\relax (5 )} + \left (x + x \log {\relax (5 )} + 3\right ) \log {\relax (x )} + 3}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________