Optimal. Leaf size=14 \[ \frac {12}{25} x \left (7+x^2\right )^2 \log (x) \]
________________________________________________________________________________________
Rubi [A] time = 0.04, antiderivative size = 26, normalized size of antiderivative = 1.86, number of steps used = 7, number of rules used = 4, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.129, Rules used = {12, 2356, 2295, 2304} \begin {gather*} \frac {12}{25} x^5 \log (x)+\frac {168}{25} x^3 \log (x)+\frac {588}{25} x \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2295
Rule 2304
Rule 2356
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{25} \int \left (588+168 x^2+12 x^4+\left (588+504 x^2+60 x^4\right ) \log (x)\right ) \, dx\\ &=\frac {588 x}{25}+\frac {56 x^3}{25}+\frac {12 x^5}{125}+\frac {1}{25} \int \left (588+504 x^2+60 x^4\right ) \log (x) \, dx\\ &=\frac {588 x}{25}+\frac {56 x^3}{25}+\frac {12 x^5}{125}+\frac {1}{25} \int \left (588 \log (x)+504 x^2 \log (x)+60 x^4 \log (x)\right ) \, dx\\ &=\frac {588 x}{25}+\frac {56 x^3}{25}+\frac {12 x^5}{125}+\frac {12}{5} \int x^4 \log (x) \, dx+\frac {504}{25} \int x^2 \log (x) \, dx+\frac {588}{25} \int \log (x) \, dx\\ &=\frac {588}{25} x \log (x)+\frac {168}{25} x^3 \log (x)+\frac {12}{25} x^5 \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 26, normalized size = 1.86 \begin {gather*} \frac {588}{25} x \log (x)+\frac {168}{25} x^3 \log (x)+\frac {12}{25} x^5 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.71, size = 16, normalized size = 1.14 \begin {gather*} \frac {12}{25} \, {\left (x^{5} + 14 \, x^{3} + 49 \, x\right )} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 20, normalized size = 1.43 \begin {gather*} \frac {12}{25} \, x^{5} \log \relax (x) + \frac {168}{25} \, x^{3} \log \relax (x) + \frac {588}{25} \, x \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 19, normalized size = 1.36
method | result | size |
risch | \(\frac {\left (12 x^{5}+168 x^{3}+588 x \right ) \ln \relax (x )}{25}\) | \(19\) |
default | \(\frac {12 x^{5} \ln \relax (x )}{25}+\frac {168 x^{3} \ln \relax (x )}{25}+\frac {588 x \ln \relax (x )}{25}\) | \(21\) |
norman | \(\frac {12 x^{5} \ln \relax (x )}{25}+\frac {168 x^{3} \ln \relax (x )}{25}+\frac {588 x \ln \relax (x )}{25}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 16, normalized size = 1.14 \begin {gather*} \frac {12}{25} \, {\left (x^{5} + 14 \, x^{3} + 49 \, x\right )} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.19, size = 12, normalized size = 0.86 \begin {gather*} \frac {12\,x\,\ln \relax (x)\,{\left (x^2+7\right )}^2}{25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 20, normalized size = 1.43 \begin {gather*} \left (\frac {12 x^{5}}{25} + \frac {168 x^{3}}{25} + \frac {588 x}{25}\right ) \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________