Optimal. Leaf size=24 \[ \frac {e \left (11-\frac {e^{\frac {2}{x}+x}}{x}\right )}{5 x} \]
________________________________________________________________________________________
Rubi [A] time = 0.08, antiderivative size = 42, normalized size of antiderivative = 1.75, number of steps used = 4, number of rules used = 3, integrand size = 43, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.070, Rules used = {12, 14, 2288} \begin {gather*} \frac {e^{x+\frac {2}{x}+1} \left (2-x^2\right )}{5 \left (1-\frac {2}{x^2}\right ) x^4}+\frac {11 e}{5 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int \frac {-11 e x+e^{1+\frac {2+x \log \left (\frac {e^x}{x}\right )}{x}} \left (2+2 x-x^2\right )}{x^3} \, dx\\ &=\frac {1}{5} \int \left (-\frac {11 e}{x^2}-\frac {e^{1+\frac {2}{x}+x} \left (-2-2 x+x^2\right )}{x^4}\right ) \, dx\\ &=\frac {11 e}{5 x}-\frac {1}{5} \int \frac {e^{1+\frac {2}{x}+x} \left (-2-2 x+x^2\right )}{x^4} \, dx\\ &=\frac {11 e}{5 x}+\frac {e^{1+\frac {2}{x}+x} \left (2-x^2\right )}{5 \left (1-\frac {2}{x^2}\right ) x^4}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 21, normalized size = 0.88 \begin {gather*} -\frac {e \left (e^{\frac {2}{x}+x}-11 x\right )}{5 x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 29, normalized size = 1.21 \begin {gather*} \frac {11 \, e - e^{\left (\frac {x \log \left (\frac {e^{x}}{x}\right ) + x + 2}{x}\right )}}{5 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.67, size = 24, normalized size = 1.00 \begin {gather*} \frac {11 \, x e - e^{\left (\frac {x^{2} + x + 2}{x}\right )}}{5 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.24, size = 32, normalized size = 1.33
method | result | size |
default | \(\frac {11 \,{\mathrm e}}{5 x}-\frac {{\mathrm e} \,{\mathrm e}^{\frac {x \ln \left (\frac {{\mathrm e}^{x}}{x}\right )+2}{x}}}{5 x}\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.76, size = 22, normalized size = 0.92 \begin {gather*} \frac {11 \, e}{5 \, x} - \frac {e^{\left (x + \frac {2}{x} + 1\right )}}{5 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {\frac {11\,x\,\mathrm {e}}{5}-\frac {{\mathrm {e}}^{\frac {x\,\ln \left (\frac {{\mathrm {e}}^x}{x}\right )+2}{x}}\,\mathrm {e}\,\left (-x^2+2\,x+2\right )}{5}}{x^3} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} - \frac {e \left (\int \frac {11}{x^{2}}\, dx + \int \left (- \frac {2 e^{\frac {2}{x}} e^{x}}{x^{4}}\right )\, dx + \int \left (- \frac {2 e^{\frac {2}{x}} e^{x}}{x^{3}}\right )\, dx + \int \frac {e^{\frac {2}{x}} e^{x}}{x^{2}}\, dx\right )}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________