Optimal. Leaf size=31 \[ 4+\frac {\left (x+\frac {x}{3 (5+x)}\right ) \left (2+x-\frac {\log (\log (3))}{x}\right )^2}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.12, antiderivative size = 54, normalized size of antiderivative = 1.74, number of steps used = 5, number of rules used = 4, integrand size = 74, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.054, Rules used = {1594, 27, 12, 1620} \begin {gather*} x^2+\frac {16 \log ^2(\log (3))}{15 x^2}+\frac {13 x}{3}+\frac {(15-\log (\log (3)))^2}{75 (x+5)}-\frac {\log (\log (3)) (320+\log (\log (3)))}{75 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 1594
Rule 1620
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {316 x^3+280 x^4+73 x^5+6 x^6+\left (320 x+128 x^2+14 x^3\right ) \log (\log (3))+\left (-160-63 x-6 x^2\right ) \log ^2(\log (3))}{x^3 \left (75+30 x+3 x^2\right )} \, dx\\ &=\int \frac {316 x^3+280 x^4+73 x^5+6 x^6+\left (320 x+128 x^2+14 x^3\right ) \log (\log (3))+\left (-160-63 x-6 x^2\right ) \log ^2(\log (3))}{3 x^3 (5+x)^2} \, dx\\ &=\frac {1}{3} \int \frac {316 x^3+280 x^4+73 x^5+6 x^6+\left (320 x+128 x^2+14 x^3\right ) \log (\log (3))+\left (-160-63 x-6 x^2\right ) \log ^2(\log (3))}{x^3 (5+x)^2} \, dx\\ &=\frac {1}{3} \int \left (13+6 x-\frac {(-15+\log (\log (3)))^2}{25 (5+x)^2}-\frac {32 \log ^2(\log (3))}{5 x^3}+\frac {\log (\log (3)) (320+\log (\log (3)))}{25 x^2}\right ) \, dx\\ &=\frac {13 x}{3}+x^2+\frac {(15-\log (\log (3)))^2}{75 (5+x)}+\frac {16 \log ^2(\log (3))}{15 x^2}-\frac {\log (\log (3)) (320+\log (\log (3)))}{75 x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 49, normalized size = 1.58 \begin {gather*} \frac {1}{75} \left (325 x+75 x^2+\frac {(-15+\log (\log (3)))^2}{5+x}+\frac {80 \log ^2(\log (3))}{x^2}-\frac {\log (\log (3)) (320+\log (\log (3)))}{x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 59, normalized size = 1.90 \begin {gather*} \frac {3 \, x^{5} + 28 \, x^{4} + 65 \, x^{3} + {\left (3 \, x + 16\right )} \log \left (\log \relax (3)\right )^{2} + 9 \, x^{2} - 2 \, {\left (7 \, x^{2} + 32 \, x\right )} \log \left (\log \relax (3)\right )}{3 \, {\left (x^{3} + 5 \, x^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.30, size = 52, normalized size = 1.68 \begin {gather*} x^{2} + \frac {13}{3} \, x + \frac {\log \left (\log \relax (3)\right )^{2} - 30 \, \log \left (\log \relax (3)\right ) + 225}{75 \, {\left (x + 5\right )}} - \frac {x \log \left (\log \relax (3)\right )^{2} + 320 \, x \log \left (\log \relax (3)\right ) - 80 \, \log \left (\log \relax (3)\right )^{2}}{75 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.19, size = 50, normalized size = 1.61
method | result | size |
norman | \(\frac {x^{5}+\left (\ln \left (\ln \relax (3)\right )^{2}-\frac {64 \ln \left (\ln \relax (3)\right )}{3}\right ) x +\left (-\frac {316}{3}-\frac {14 \ln \left (\ln \relax (3)\right )}{3}\right ) x^{2}+\frac {28 x^{4}}{3}+\frac {16 \ln \left (\ln \relax (3)\right )^{2}}{3}}{x^{2} \left (5+x \right )}\) | \(50\) |
default | \(\frac {13 x}{3}+x^{2}+\frac {16 \ln \left (\ln \relax (3)\right )^{2}}{15 x^{2}}-\frac {\ln \left (\ln \relax (3)\right ) \left (\ln \left (\ln \relax (3)\right )+320\right )}{75 x}-\frac {-\frac {\ln \left (\ln \relax (3)\right )^{2}}{25}+\frac {6 \ln \left (\ln \relax (3)\right )}{5}-9}{3 \left (5+x \right )}\) | \(52\) |
risch | \(x^{2}+\frac {13 x}{3}+\frac {\frac {\left (-14 \ln \left (\ln \relax (3)\right )+9\right ) x^{2}}{3}+\frac {\left (3 \ln \left (\ln \relax (3)\right )^{2}-64 \ln \left (\ln \relax (3)\right )\right ) x}{3}+\frac {16 \ln \left (\ln \relax (3)\right )^{2}}{3}}{x^{2} \left (5+x \right )}\) | \(53\) |
gosper | \(\frac {3 x^{5}+28 x^{4}+3 \ln \left (\ln \relax (3)\right )^{2} x -14 x^{2} \ln \left (\ln \relax (3)\right )+16 \ln \left (\ln \relax (3)\right )^{2}-64 \ln \left (\ln \relax (3)\right ) x -316 x^{2}}{3 x^{2} \left (5+x \right )}\) | \(56\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.46, size = 55, normalized size = 1.77 \begin {gather*} x^{2} + \frac {13}{3} \, x - \frac {x^{2} {\left (14 \, \log \left (\log \relax (3)\right ) - 9\right )} - {\left (3 \, \log \left (\log \relax (3)\right )^{2} - 64 \, \log \left (\log \relax (3)\right )\right )} x - 16 \, \log \left (\log \relax (3)\right )^{2}}{3 \, {\left (x^{3} + 5 \, x^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.11, size = 56, normalized size = 1.81 \begin {gather*} \frac {13\,x}{3}-\frac {\left (14\,\ln \left (\ln \relax (3)\right )-9\right )\,x^2+\left (64\,\ln \left (\ln \relax (3)\right )-3\,{\ln \left (\ln \relax (3)\right )}^2\right )\,x-16\,{\ln \left (\ln \relax (3)\right )}^2}{3\,x^3+15\,x^2}+x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.03, size = 54, normalized size = 1.74 \begin {gather*} x^{2} + \frac {13 x}{3} + \frac {x^{2} \left (9 - 14 \log {\left (\log {\relax (3 )} \right )}\right ) + x \left (- 64 \log {\left (\log {\relax (3 )} \right )} + 3 \log {\left (\log {\relax (3 )} \right )}^{2}\right ) + 16 \log {\left (\log {\relax (3 )} \right )}^{2}}{3 x^{3} + 15 x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________