Optimal. Leaf size=36 \[ \frac {x}{-3+\frac {1-e^x-x^3}{x}+\log \left (\frac {1+x}{5+(-5+x) x}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 78.90, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {10 x-15 x^2-18 x^3+21 x^4-2 x^5-4 x^6+x^7+e^x \left (-10 x+5 x^2+8 x^3-6 x^4+x^5\right )+\left (5 x^2-4 x^4+x^5\right ) \log \left (\frac {1+x}{5-5 x+x^2}\right )}{5-30 x+41 x^2+15 x^3-12 x^4+17 x^5-21 x^6+6 x^7-4 x^8+x^9+e^{2 x} \left (5-4 x^2+x^3\right )+e^x \left (-10+30 x+8 x^2-16 x^3+6 x^4-8 x^5+2 x^6\right )+\left (10 x-30 x^2-8 x^3+16 x^4-6 x^5+8 x^6-2 x^7+e^x \left (-10 x+8 x^3-2 x^4\right )\right ) \log \left (\frac {1+x}{5-5 x+x^2}\right )+\left (5 x^2-4 x^4+x^5\right ) \log ^2\left (\frac {1+x}{5-5 x+x^2}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x \left (10-15 x-18 x^2+21 x^3-2 x^4-4 x^5+x^6+e^x \left (-10+5 x+8 x^2-6 x^3+x^4\right )+x \left (5-4 x^2+x^3\right ) \log \left (\frac {1+x}{5-5 x+x^2}\right )\right )}{\left (5-4 x^2+x^3\right ) \left (1-e^x-3 x-x^3+x \log \left (\frac {1+x}{5-5 x+x^2}\right )\right )^2} \, dx\\ &=\int \left (\frac {(-2+x) x}{-1+e^x+3 x+x^3-x \log \left (\frac {1+x}{5-5 x+x^2}\right )}-\frac {x^2 \left (-20+25 x-x^2-12 x^3+15 x^4-7 x^5+x^6+5 \log \left (\frac {1+x}{5-5 x+x^2}\right )-5 x \log \left (\frac {1+x}{5-5 x+x^2}\right )-4 x^2 \log \left (\frac {1+x}{5-5 x+x^2}\right )+5 x^3 \log \left (\frac {1+x}{5-5 x+x^2}\right )-x^4 \log \left (\frac {1+x}{5-5 x+x^2}\right )\right )}{\left (5-4 x^2+x^3\right ) \left (-1+e^x+3 x+x^3-x \log \left (\frac {1+x}{5-5 x+x^2}\right )\right )^2}\right ) \, dx\\ &=\int \frac {(-2+x) x}{-1+e^x+3 x+x^3-x \log \left (\frac {1+x}{5-5 x+x^2}\right )} \, dx-\int \frac {x^2 \left (-20+25 x-x^2-12 x^3+15 x^4-7 x^5+x^6+5 \log \left (\frac {1+x}{5-5 x+x^2}\right )-5 x \log \left (\frac {1+x}{5-5 x+x^2}\right )-4 x^2 \log \left (\frac {1+x}{5-5 x+x^2}\right )+5 x^3 \log \left (\frac {1+x}{5-5 x+x^2}\right )-x^4 \log \left (\frac {1+x}{5-5 x+x^2}\right )\right )}{\left (5-4 x^2+x^3\right ) \left (-1+e^x+3 x+x^3-x \log \left (\frac {1+x}{5-5 x+x^2}\right )\right )^2} \, dx\\ &=-\int \frac {x^2 \left (-20+25 x-x^2-12 x^3+15 x^4-7 x^5+x^6-\left (-5+5 x+4 x^2-5 x^3+x^4\right ) \log \left (\frac {1+x}{5-5 x+x^2}\right )\right )}{\left (5-4 x^2+x^3\right ) \left (1-e^x-3 x-x^3+x \log \left (\frac {1+x}{5-5 x+x^2}\right )\right )^2} \, dx+\int \left (-\frac {2 x}{-1+e^x+3 x+x^3-x \log \left (\frac {1+x}{5-5 x+x^2}\right )}+\frac {x^2}{-1+e^x+3 x+x^3-x \log \left (\frac {1+x}{5-5 x+x^2}\right )}\right ) \, dx\\ &=-\left (2 \int \frac {x}{-1+e^x+3 x+x^3-x \log \left (\frac {1+x}{5-5 x+x^2}\right )} \, dx\right )+\int \frac {x^2}{-1+e^x+3 x+x^3-x \log \left (\frac {1+x}{5-5 x+x^2}\right )} \, dx-\int \left (\frac {-20+25 x-x^2-12 x^3+15 x^4-7 x^5+x^6+5 \log \left (\frac {1+x}{5-5 x+x^2}\right )-5 x \log \left (\frac {1+x}{5-5 x+x^2}\right )-4 x^2 \log \left (\frac {1+x}{5-5 x+x^2}\right )+5 x^3 \log \left (\frac {1+x}{5-5 x+x^2}\right )-x^4 \log \left (\frac {1+x}{5-5 x+x^2}\right )}{11 (1+x) \left (-1+e^x+3 x+x^3-x \log \left (\frac {1+x}{5-5 x+x^2}\right )\right )^2}+\frac {5 (-1+2 x) \left (-20+25 x-x^2-12 x^3+15 x^4-7 x^5+x^6+5 \log \left (\frac {1+x}{5-5 x+x^2}\right )-5 x \log \left (\frac {1+x}{5-5 x+x^2}\right )-4 x^2 \log \left (\frac {1+x}{5-5 x+x^2}\right )+5 x^3 \log \left (\frac {1+x}{5-5 x+x^2}\right )-x^4 \log \left (\frac {1+x}{5-5 x+x^2}\right )\right )}{11 \left (5-5 x+x^2\right ) \left (-1+e^x+3 x+x^3-x \log \left (\frac {1+x}{5-5 x+x^2}\right )\right )^2}\right ) \, dx\\ &=-\left (\frac {1}{11} \int \frac {-20+25 x-x^2-12 x^3+15 x^4-7 x^5+x^6+5 \log \left (\frac {1+x}{5-5 x+x^2}\right )-5 x \log \left (\frac {1+x}{5-5 x+x^2}\right )-4 x^2 \log \left (\frac {1+x}{5-5 x+x^2}\right )+5 x^3 \log \left (\frac {1+x}{5-5 x+x^2}\right )-x^4 \log \left (\frac {1+x}{5-5 x+x^2}\right )}{(1+x) \left (-1+e^x+3 x+x^3-x \log \left (\frac {1+x}{5-5 x+x^2}\right )\right )^2} \, dx\right )-\frac {5}{11} \int \frac {(-1+2 x) \left (-20+25 x-x^2-12 x^3+15 x^4-7 x^5+x^6+5 \log \left (\frac {1+x}{5-5 x+x^2}\right )-5 x \log \left (\frac {1+x}{5-5 x+x^2}\right )-4 x^2 \log \left (\frac {1+x}{5-5 x+x^2}\right )+5 x^3 \log \left (\frac {1+x}{5-5 x+x^2}\right )-x^4 \log \left (\frac {1+x}{5-5 x+x^2}\right )\right )}{\left (5-5 x+x^2\right ) \left (-1+e^x+3 x+x^3-x \log \left (\frac {1+x}{5-5 x+x^2}\right )\right )^2} \, dx-2 \int \frac {x}{-1+e^x+3 x+x^3-x \log \left (\frac {1+x}{5-5 x+x^2}\right )} \, dx+\int \frac {x^2}{-1+e^x+3 x+x^3-x \log \left (\frac {1+x}{5-5 x+x^2}\right )} \, dx\\ &=-\left (\frac {1}{11} \int \frac {-20+25 x-x^2-12 x^3+15 x^4-7 x^5+x^6-\left (-5+5 x+4 x^2-5 x^3+x^4\right ) \log \left (\frac {1+x}{5-5 x+x^2}\right )}{(1+x) \left (1-e^x-3 x-x^3+x \log \left (\frac {1+x}{5-5 x+x^2}\right )\right )^2} \, dx\right )-\frac {5}{11} \int \frac {(1-2 x) \left (20-25 x+x^2+12 x^3-15 x^4+7 x^5-x^6+\left (-5+5 x+4 x^2-5 x^3+x^4\right ) \log \left (\frac {1+x}{5-5 x+x^2}\right )\right )}{\left (5-5 x+x^2\right ) \left (1-e^x-3 x-x^3+x \log \left (\frac {1+x}{5-5 x+x^2}\right )\right )^2} \, dx-2 \int \frac {x}{-1+e^x+3 x+x^3-x \log \left (\frac {1+x}{5-5 x+x^2}\right )} \, dx+\int \frac {x^2}{-1+e^x+3 x+x^3-x \log \left (\frac {1+x}{5-5 x+x^2}\right )} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 38, normalized size = 1.06 \begin {gather*} \frac {x^2}{1-e^x-3 x-x^3+x \log \left (\frac {1+x}{5-5 x+x^2}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 35, normalized size = 0.97 \begin {gather*} -\frac {x^{2}}{x^{3} - x \log \left (\frac {x + 1}{x^{2} - 5 \, x + 5}\right ) + 3 \, x + e^{x} - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.65, size = 35, normalized size = 0.97 \begin {gather*} -\frac {x^{2}}{x^{3} - x \log \left (\frac {x + 1}{x^{2} - 5 \, x + 5}\right ) + 3 \, x + e^{x} - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.14, size = 177, normalized size = 4.92
method | result | size |
risch | \(-\frac {2 x^{2}}{i \pi x \,\mathrm {csgn}\left (i \left (x +1\right )\right ) \mathrm {csgn}\left (\frac {i}{x^{2}-5 x +5}\right ) \mathrm {csgn}\left (\frac {i \left (x +1\right )}{x^{2}-5 x +5}\right )-i \pi x \,\mathrm {csgn}\left (i \left (x +1\right )\right ) \mathrm {csgn}\left (\frac {i \left (x +1\right )}{x^{2}-5 x +5}\right )^{2}-i \pi x \,\mathrm {csgn}\left (\frac {i}{x^{2}-5 x +5}\right ) \mathrm {csgn}\left (\frac {i \left (x +1\right )}{x^{2}-5 x +5}\right )^{2}+i \pi x \mathrm {csgn}\left (\frac {i \left (x +1\right )}{x^{2}-5 x +5}\right )^{3}+2 x^{3}-2 \ln \left (x +1\right ) x +2 x \ln \left (x^{2}-5 x +5\right )+6 x +2 \,{\mathrm e}^{x}-2}\) | \(177\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.54, size = 35, normalized size = 0.97 \begin {gather*} -\frac {x^{2}}{x^{3} + x \log \left (x^{2} - 5 \, x + 5\right ) - x \log \left (x + 1\right ) + 3 \, x + e^{x} - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.93, size = 216, normalized size = 6.00 \begin {gather*} -\frac {25\,x^3\,{\mathrm {e}}^x+x^9\,\left ({\mathrm {e}}^x+33\right )-x^8\,\left (9\,{\mathrm {e}}^x-19\right )-x^2\,\left (25\,{\mathrm {e}}^x-25\right )-x^6\,\left (6\,{\mathrm {e}}^x-61\right )-x^5\,\left (50\,{\mathrm {e}}^x-70\right )+x^4\,\left (40\,{\mathrm {e}}^x-90\right )+x^7\,\left (24\,{\mathrm {e}}^x-106\right )-16\,x^{10}+2\,x^{11}}{\left (3\,x+{\mathrm {e}}^x+x^3-x\,\ln \left (\frac {x+1}{x^2-5\,x+5}\right )-1\right )\,\left (40\,x^2\,{\mathrm {e}}^x-25\,{\mathrm {e}}^x-50\,x^3\,{\mathrm {e}}^x-6\,x^4\,{\mathrm {e}}^x+24\,x^5\,{\mathrm {e}}^x-9\,x^6\,{\mathrm {e}}^x+x^7\,{\mathrm {e}}^x+25\,x\,{\mathrm {e}}^x-90\,x^2+70\,x^3+61\,x^4-106\,x^5+19\,x^6+33\,x^7-16\,x^8+2\,x^9+25\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.57, size = 31, normalized size = 0.86 \begin {gather*} - \frac {x^{2}}{x^{3} - x \log {\left (\frac {x + 1}{x^{2} - 5 x + 5} \right )} + 3 x + e^{x} - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________