Optimal. Leaf size=23 \[ 3 \left (-\frac {4+x}{x}+\frac {x}{\log (-x+\log (\log (x)))}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.36, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-3 x^2+3 x^3 \log (x)+\left (-3 x^3 \log (x)+3 x^2 \log (x) \log (\log (x))\right ) \log (-x+\log (\log (x)))+(-12 x \log (x)+12 \log (x) \log (\log (x))) \log ^2(-x+\log (\log (x)))}{\left (-x^3 \log (x)+x^2 \log (x) \log (\log (x))\right ) \log ^2(-x+\log (\log (x)))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3 x^2-3 x^3 \log (x)-\left (-3 x^3 \log (x)+3 x^2 \log (x) \log (\log (x))\right ) \log (-x+\log (\log (x)))-(-12 x \log (x)+12 \log (x) \log (\log (x))) \log ^2(-x+\log (\log (x)))}{x^2 \log (x) (x-\log (\log (x))) \log ^2(-x+\log (\log (x)))} \, dx\\ &=\int \left (\frac {12}{x^2}-\frac {3 (-1+x \log (x))}{\log (x) (x-\log (\log (x))) \log ^2(-x+\log (\log (x)))}+\frac {3}{\log (-x+\log (\log (x)))}\right ) \, dx\\ &=-\frac {12}{x}-3 \int \frac {-1+x \log (x)}{\log (x) (x-\log (\log (x))) \log ^2(-x+\log (\log (x)))} \, dx+3 \int \frac {1}{\log (-x+\log (\log (x)))} \, dx\\ &=-\frac {12}{x}-3 \int \left (\frac {x}{(x-\log (\log (x))) \log ^2(-x+\log (\log (x)))}-\frac {1}{\log (x) (x-\log (\log (x))) \log ^2(-x+\log (\log (x)))}\right ) \, dx+3 \int \frac {1}{\log (-x+\log (\log (x)))} \, dx\\ &=-\frac {12}{x}-3 \int \frac {x}{(x-\log (\log (x))) \log ^2(-x+\log (\log (x)))} \, dx+3 \int \frac {1}{\log (x) (x-\log (\log (x))) \log ^2(-x+\log (\log (x)))} \, dx+3 \int \frac {1}{\log (-x+\log (\log (x)))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 20, normalized size = 0.87 \begin {gather*} 3 \left (-\frac {4}{x}+\frac {x}{\log (-x+\log (\log (x)))}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 29, normalized size = 1.26 \begin {gather*} \frac {3 \, {\left (x^{2} - 4 \, \log \left (-x + \log \left (\log \relax (x)\right )\right )\right )}}{x \log \left (-x + \log \left (\log \relax (x)\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 20, normalized size = 0.87
method | result | size |
risch | \(-\frac {12}{x}+\frac {3 x}{\ln \left (\ln \left (\ln \relax (x )\right )-x \right )}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 29, normalized size = 1.26 \begin {gather*} \frac {3 \, {\left (x^{2} - 4 \, \log \left (-x + \log \left (\log \relax (x)\right )\right )\right )}}{x \log \left (-x + \log \left (\log \relax (x)\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.84, size = 90, normalized size = 3.91 \begin {gather*} 3\,x-3\,\ln \left (\ln \relax (x)\right )-\frac {3\,\ln \left (\ln \relax (x)\right )}{x\,\ln \relax (x)-1}+\frac {3\,x-\frac {3\,x\,\ln \relax (x)\,\ln \left (\ln \left (\ln \relax (x)\right )-x\right )\,\left (x-\ln \left (\ln \relax (x)\right )\right )}{x\,\ln \relax (x)-1}}{\ln \left (\ln \left (\ln \relax (x)\right )-x\right )}-\frac {12}{x}+\frac {3\,\left (x^2+x\right )}{\left (x\,\ln \relax (x)-1\right )\,\left (x+1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.45, size = 14, normalized size = 0.61 \begin {gather*} \frac {3 x}{\log {\left (- x + \log {\left (\log {\relax (x )} \right )} \right )}} - \frac {12}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________