Optimal. Leaf size=21 \[ \frac {e^{2+x+\frac {2+x^5}{15 x^2}}}{x^2} \]
________________________________________________________________________________________
Rubi [B] time = 0.11, antiderivative size = 81, normalized size of antiderivative = 3.86, number of steps used = 2, number of rules used = 2, integrand size = 48, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.042, Rules used = {12, 2288} \begin {gather*} -\frac {e^{\frac {x^5+15 x^3+30 x^2+2}{15 x^2}} \left (-3 x^5-15 x^3+4\right )}{x^5 \left (\frac {5 \left (x^4+9 x^2+12 x\right )}{x^2}-\frac {2 \left (x^5+15 x^3+30 x^2+2\right )}{x^3}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{15} \int \frac {e^{\frac {2+30 x^2+15 x^3+x^5}{15 x^2}} \left (-4-30 x^2+15 x^3+3 x^5\right )}{x^5} \, dx\\ &=-\frac {e^{\frac {2+30 x^2+15 x^3+x^5}{15 x^2}} \left (4-15 x^3-3 x^5\right )}{x^5 \left (\frac {5 \left (12 x+9 x^2+x^4\right )}{x^2}-\frac {2 \left (2+30 x^2+15 x^3+x^5\right )}{x^3}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 23, normalized size = 1.10 \begin {gather*} \frac {e^{2+\frac {2}{15 x^2}+x+\frac {x^3}{15}}}{x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 25, normalized size = 1.19 \begin {gather*} \frac {e^{\left (\frac {x^{5} + 15 \, x^{3} + 30 \, x^{2} + 2}{15 \, x^{2}}\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 25, normalized size = 1.19 \begin {gather*} \frac {e^{\left (\frac {x^{5} + 15 \, x^{3} + 30 \, x^{2} + 2}{15 \, x^{2}}\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 26, normalized size = 1.24
method | result | size |
gosper | \(\frac {{\mathrm e}^{\frac {x^{5}+15 x^{3}+30 x^{2}+2}{15 x^{2}}}}{x^{2}}\) | \(26\) |
norman | \(\frac {{\mathrm e}^{\frac {x^{5}+15 x^{3}+30 x^{2}+2}{15 x^{2}}}}{x^{2}}\) | \(26\) |
risch | \(\frac {{\mathrm e}^{\frac {x^{5}+15 x^{3}+30 x^{2}+2}{15 x^{2}}}}{x^{2}}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.59, size = 18, normalized size = 0.86 \begin {gather*} \frac {e^{\left (\frac {1}{15} \, x^{3} + x + \frac {2}{15 \, x^{2}} + 2\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.65, size = 18, normalized size = 0.86 \begin {gather*} \frac {{\mathrm {e}}^{x+\frac {2}{15\,x^2}+\frac {x^3}{15}+2}}{x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 24, normalized size = 1.14 \begin {gather*} \frac {e^{\frac {\frac {x^{5}}{15} + x^{3} + 2 x^{2} + \frac {2}{15}}{x^{2}}}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________