3.56.83 \(\int \frac {e^{\frac {2+30 x^2+15 x^3+x^5}{15 x^2}} (-4-30 x^2+15 x^3+3 x^5)}{15 x^5} \, dx\)

Optimal. Leaf size=21 \[ \frac {e^{2+x+\frac {2+x^5}{15 x^2}}}{x^2} \]

________________________________________________________________________________________

Rubi [B]  time = 0.11, antiderivative size = 81, normalized size of antiderivative = 3.86, number of steps used = 2, number of rules used = 2, integrand size = 48, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.042, Rules used = {12, 2288} \begin {gather*} -\frac {e^{\frac {x^5+15 x^3+30 x^2+2}{15 x^2}} \left (-3 x^5-15 x^3+4\right )}{x^5 \left (\frac {5 \left (x^4+9 x^2+12 x\right )}{x^2}-\frac {2 \left (x^5+15 x^3+30 x^2+2\right )}{x^3}\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(E^((2 + 30*x^2 + 15*x^3 + x^5)/(15*x^2))*(-4 - 30*x^2 + 15*x^3 + 3*x^5))/(15*x^5),x]

[Out]

-((E^((2 + 30*x^2 + 15*x^3 + x^5)/(15*x^2))*(4 - 15*x^3 - 3*x^5))/(x^5*((5*(12*x + 9*x^2 + x^4))/x^2 - (2*(2 +
 30*x^2 + 15*x^3 + x^5))/x^3)))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2288

Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = (v*y)/(Log[F]*D[u, x])}, Simp[F^u*z, x] /; EqQ[D[z,
x], w*y]] /; FreeQ[F, x]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{15} \int \frac {e^{\frac {2+30 x^2+15 x^3+x^5}{15 x^2}} \left (-4-30 x^2+15 x^3+3 x^5\right )}{x^5} \, dx\\ &=-\frac {e^{\frac {2+30 x^2+15 x^3+x^5}{15 x^2}} \left (4-15 x^3-3 x^5\right )}{x^5 \left (\frac {5 \left (12 x+9 x^2+x^4\right )}{x^2}-\frac {2 \left (2+30 x^2+15 x^3+x^5\right )}{x^3}\right )}\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 23, normalized size = 1.10 \begin {gather*} \frac {e^{2+\frac {2}{15 x^2}+x+\frac {x^3}{15}}}{x^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(E^((2 + 30*x^2 + 15*x^3 + x^5)/(15*x^2))*(-4 - 30*x^2 + 15*x^3 + 3*x^5))/(15*x^5),x]

[Out]

E^(2 + 2/(15*x^2) + x + x^3/15)/x^2

________________________________________________________________________________________

fricas [A]  time = 0.54, size = 25, normalized size = 1.19 \begin {gather*} \frac {e^{\left (\frac {x^{5} + 15 \, x^{3} + 30 \, x^{2} + 2}{15 \, x^{2}}\right )}}{x^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/15*(3*x^5+15*x^3-30*x^2-4)*exp(1/15*(x^5+15*x^3+30*x^2+2)/x^2)/x^5,x, algorithm="fricas")

[Out]

e^(1/15*(x^5 + 15*x^3 + 30*x^2 + 2)/x^2)/x^2

________________________________________________________________________________________

giac [A]  time = 0.22, size = 25, normalized size = 1.19 \begin {gather*} \frac {e^{\left (\frac {x^{5} + 15 \, x^{3} + 30 \, x^{2} + 2}{15 \, x^{2}}\right )}}{x^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/15*(3*x^5+15*x^3-30*x^2-4)*exp(1/15*(x^5+15*x^3+30*x^2+2)/x^2)/x^5,x, algorithm="giac")

[Out]

e^(1/15*(x^5 + 15*x^3 + 30*x^2 + 2)/x^2)/x^2

________________________________________________________________________________________

maple [A]  time = 0.08, size = 26, normalized size = 1.24




method result size



gosper \(\frac {{\mathrm e}^{\frac {x^{5}+15 x^{3}+30 x^{2}+2}{15 x^{2}}}}{x^{2}}\) \(26\)
norman \(\frac {{\mathrm e}^{\frac {x^{5}+15 x^{3}+30 x^{2}+2}{15 x^{2}}}}{x^{2}}\) \(26\)
risch \(\frac {{\mathrm e}^{\frac {x^{5}+15 x^{3}+30 x^{2}+2}{15 x^{2}}}}{x^{2}}\) \(26\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/15*(3*x^5+15*x^3-30*x^2-4)*exp(1/15*(x^5+15*x^3+30*x^2+2)/x^2)/x^5,x,method=_RETURNVERBOSE)

[Out]

1/x^2*exp(1/15*(x^5+15*x^3+30*x^2+2)/x^2)

________________________________________________________________________________________

maxima [A]  time = 0.59, size = 18, normalized size = 0.86 \begin {gather*} \frac {e^{\left (\frac {1}{15} \, x^{3} + x + \frac {2}{15 \, x^{2}} + 2\right )}}{x^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/15*(3*x^5+15*x^3-30*x^2-4)*exp(1/15*(x^5+15*x^3+30*x^2+2)/x^2)/x^5,x, algorithm="maxima")

[Out]

e^(1/15*x^3 + x + 2/15/x^2 + 2)/x^2

________________________________________________________________________________________

mupad [B]  time = 3.65, size = 18, normalized size = 0.86 \begin {gather*} \frac {{\mathrm {e}}^{x+\frac {2}{15\,x^2}+\frac {x^3}{15}+2}}{x^2} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp((2*x^2 + x^3 + x^5/15 + 2/15)/x^2)*(30*x^2 - 15*x^3 - 3*x^5 + 4))/(15*x^5),x)

[Out]

exp(x + 2/(15*x^2) + x^3/15 + 2)/x^2

________________________________________________________________________________________

sympy [A]  time = 0.12, size = 24, normalized size = 1.14 \begin {gather*} \frac {e^{\frac {\frac {x^{5}}{15} + x^{3} + 2 x^{2} + \frac {2}{15}}{x^{2}}}}{x^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/15*(3*x**5+15*x**3-30*x**2-4)*exp(1/15*(x**5+15*x**3+30*x**2+2)/x**2)/x**5,x)

[Out]

exp((x**5/15 + x**3 + 2*x**2 + 2/15)/x**2)/x**2

________________________________________________________________________________________