Optimal. Leaf size=31 \[ x \log \left (\frac {x \left (-2 x+\frac {x}{-1-e^{20}}+\log (1-x)\right )}{1+x}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 5.64, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {7 x-2 x^2-3 x^3+e^{20} \left (5 x-x^2-2 x^3\right )+\left (-1+e^{20} (-1+x)+x\right ) \log (1-x)+\left (3 x-3 x^3+e^{20} \left (2 x-2 x^3\right )+\left (-1+x^2+e^{20} \left (-1+x^2\right )\right ) \log (1-x)\right ) \log \left (\frac {-3 x^2-2 e^{20} x^2+\left (x+e^{20} x\right ) \log (1-x)}{1+x+e^{20} (1+x)}\right )}{3 x-3 x^3+e^{20} \left (2 x-2 x^3\right )+\left (-1+x^2+e^{20} \left (-1+x^2\right )\right ) \log (1-x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {7 x-2 x^2-3 x^3+e^{20} \left (5 x-x^2-2 x^3\right )+\left (-1+e^{20} (-1+x)+x\right ) \log (1-x)+\left (3 x-3 x^3+e^{20} \left (2 x-2 x^3\right )+\left (-1+x^2+e^{20} \left (-1+x^2\right )\right ) \log (1-x)\right ) \log \left (\frac {-3 x^2-2 e^{20} x^2+\left (x+e^{20} x\right ) \log (1-x)}{1+x+e^{20} (1+x)}\right )}{\left (1-x^2\right ) \left (3 \left (1+\frac {2 e^{20}}{3}\right ) x-\left (1+e^{20}\right ) \log (1-x)\right )} \, dx\\ &=\int \left (\frac {7 x}{(1-x) (1+x) \left (3 \left (1+\frac {2 e^{20}}{3}\right ) x-\left (1+e^{20}\right ) \log (1-x)\right )}+\frac {2 x^2}{(-1+x) (1+x) \left (3 \left (1+\frac {2 e^{20}}{3}\right ) x-\left (1+e^{20}\right ) \log (1-x)\right )}+\frac {3 x^3}{(-1+x) (1+x) \left (3 \left (1+\frac {2 e^{20}}{3}\right ) x-\left (1+e^{20}\right ) \log (1-x)\right )}+\frac {e^{20} x \left (5-x-2 x^2\right )}{(1-x) (1+x) \left (3 \left (1+\frac {2 e^{20}}{3}\right ) x-\left (1+e^{20}\right ) \log (1-x)\right )}+\frac {\left (-1-e^{20}\right ) \log (1-x)}{(1+x) \left (3 \left (1+\frac {2 e^{20}}{3}\right ) x-\left (1+e^{20}\right ) \log (1-x)\right )}+\log \left (\frac {x \left (-\left (\left (3+2 e^{20}\right ) x\right )+\left (1+e^{20}\right ) \log (1-x)\right )}{\left (1+e^{20}\right ) (1+x)}\right )\right ) \, dx\\ &=2 \int \frac {x^2}{(-1+x) (1+x) \left (3 \left (1+\frac {2 e^{20}}{3}\right ) x-\left (1+e^{20}\right ) \log (1-x)\right )} \, dx+3 \int \frac {x^3}{(-1+x) (1+x) \left (3 \left (1+\frac {2 e^{20}}{3}\right ) x-\left (1+e^{20}\right ) \log (1-x)\right )} \, dx+7 \int \frac {x}{(1-x) (1+x) \left (3 \left (1+\frac {2 e^{20}}{3}\right ) x-\left (1+e^{20}\right ) \log (1-x)\right )} \, dx+e^{20} \int \frac {x \left (5-x-2 x^2\right )}{(1-x) (1+x) \left (3 \left (1+\frac {2 e^{20}}{3}\right ) x-\left (1+e^{20}\right ) \log (1-x)\right )} \, dx+\left (-1-e^{20}\right ) \int \frac {\log (1-x)}{(1+x) \left (3 \left (1+\frac {2 e^{20}}{3}\right ) x-\left (1+e^{20}\right ) \log (1-x)\right )} \, dx+\int \log \left (\frac {x \left (-\left (\left (3+2 e^{20}\right ) x\right )+\left (1+e^{20}\right ) \log (1-x)\right )}{\left (1+e^{20}\right ) (1+x)}\right ) \, dx\\ &=x \log \left (-\frac {x \left (\left (3+2 e^{20}\right ) x-\left (1+e^{20}\right ) \log (1-x)\right )}{\left (1+e^{20}\right ) (1+x)}\right )+2 \int \left (\frac {1}{3 \left (1+\frac {2 e^{20}}{3}\right ) x-\left (1+e^{20}\right ) \log (1-x)}+\frac {1}{\left (-1+x^2\right ) \left (3 \left (1+\frac {2 e^{20}}{3}\right ) x-\left (1+e^{20}\right ) \log (1-x)\right )}\right ) \, dx+3 \int \left (\frac {1}{2 (-1+x) \left (3 \left (1+\frac {2 e^{20}}{3}\right ) x-\left (1+e^{20}\right ) \log (1-x)\right )}+\frac {x}{3 \left (1+\frac {2 e^{20}}{3}\right ) x-\left (1+e^{20}\right ) \log (1-x)}+\frac {1}{2 (1+x) \left (3 \left (1+\frac {2 e^{20}}{3}\right ) x-\left (1+e^{20}\right ) \log (1-x)\right )}\right ) \, dx+7 \int \left (\frac {1}{2 (-1-x) \left (3 \left (1+\frac {2 e^{20}}{3}\right ) x-\left (1+e^{20}\right ) \log (1-x)\right )}+\frac {1}{2 (1-x) \left (3 \left (1+\frac {2 e^{20}}{3}\right ) x-\left (1+e^{20}\right ) \log (1-x)\right )}\right ) \, dx+e^{20} \int \left (\frac {1}{3 \left (1+\frac {2 e^{20}}{3}\right ) x-\left (1+e^{20}\right ) \log (1-x)}+\frac {2}{(-1-x) \left (3 \left (1+\frac {2 e^{20}}{3}\right ) x-\left (1+e^{20}\right ) \log (1-x)\right )}+\frac {1}{(1-x) \left (3 \left (1+\frac {2 e^{20}}{3}\right ) x-\left (1+e^{20}\right ) \log (1-x)\right )}+\frac {2 x}{3 \left (1+\frac {2 e^{20}}{3}\right ) x-\left (1+e^{20}\right ) \log (1-x)}\right ) \, dx+\left (-1-e^{20}\right ) \int \left (-\frac {1}{\left (1+e^{20}\right ) (1+x)}+\frac {\left (3+2 e^{20}\right ) x}{\left (1+e^{20}\right ) (1+x) \left (3 \left (1+\frac {2 e^{20}}{3}\right ) x-\left (1+e^{20}\right ) \log (1-x)\right )}\right ) \, dx-\int \frac {x \left (-7+2 x+3 x^2+e^{20} \left (-5+x+2 x^2\right )\right )-\left (1+e^{20}\right ) (-1+x) \log (1-x)}{(-1+x) (1+x) \left (\left (3+2 e^{20}\right ) x-\left (1+e^{20}\right ) \log (1-x)\right )} \, dx\\ &=\log (1+x)+x \log \left (-\frac {x \left (\left (3+2 e^{20}\right ) x-\left (1+e^{20}\right ) \log (1-x)\right )}{\left (1+e^{20}\right ) (1+x)}\right )+\frac {3}{2} \int \frac {1}{(-1+x) \left (3 \left (1+\frac {2 e^{20}}{3}\right ) x-\left (1+e^{20}\right ) \log (1-x)\right )} \, dx+\frac {3}{2} \int \frac {1}{(1+x) \left (3 \left (1+\frac {2 e^{20}}{3}\right ) x-\left (1+e^{20}\right ) \log (1-x)\right )} \, dx+2 \int \frac {1}{3 \left (1+\frac {2 e^{20}}{3}\right ) x-\left (1+e^{20}\right ) \log (1-x)} \, dx+2 \int \frac {1}{\left (-1+x^2\right ) \left (3 \left (1+\frac {2 e^{20}}{3}\right ) x-\left (1+e^{20}\right ) \log (1-x)\right )} \, dx+3 \int \frac {x}{3 \left (1+\frac {2 e^{20}}{3}\right ) x-\left (1+e^{20}\right ) \log (1-x)} \, dx+\frac {7}{2} \int \frac {1}{(-1-x) \left (3 \left (1+\frac {2 e^{20}}{3}\right ) x-\left (1+e^{20}\right ) \log (1-x)\right )} \, dx+\frac {7}{2} \int \frac {1}{(1-x) \left (3 \left (1+\frac {2 e^{20}}{3}\right ) x-\left (1+e^{20}\right ) \log (1-x)\right )} \, dx+e^{20} \int \frac {1}{3 \left (1+\frac {2 e^{20}}{3}\right ) x-\left (1+e^{20}\right ) \log (1-x)} \, dx+e^{20} \int \frac {1}{(1-x) \left (3 \left (1+\frac {2 e^{20}}{3}\right ) x-\left (1+e^{20}\right ) \log (1-x)\right )} \, dx+\left (2 e^{20}\right ) \int \frac {1}{(-1-x) \left (3 \left (1+\frac {2 e^{20}}{3}\right ) x-\left (1+e^{20}\right ) \log (1-x)\right )} \, dx+\left (2 e^{20}\right ) \int \frac {x}{3 \left (1+\frac {2 e^{20}}{3}\right ) x-\left (1+e^{20}\right ) \log (1-x)} \, dx+\left (-3-2 e^{20}\right ) \int \frac {x}{(1+x) \left (3 \left (1+\frac {2 e^{20}}{3}\right ) x-\left (1+e^{20}\right ) \log (1-x)\right )} \, dx-\int \left (\frac {1}{1+x}+\frac {x \left (4+3 e^{20}-\left (3+2 e^{20}\right ) x\right )}{(1-x) \left (3 \left (1+\frac {2 e^{20}}{3}\right ) x-\left (1+e^{20}\right ) \log (1-x)\right )}\right ) \, dx\\ &=x \log \left (-\frac {x \left (\left (3+2 e^{20}\right ) x-\left (1+e^{20}\right ) \log (1-x)\right )}{\left (1+e^{20}\right ) (1+x)}\right )+\frac {3}{2} \int \frac {1}{(-1+x) \left (3 \left (1+\frac {2 e^{20}}{3}\right ) x-\left (1+e^{20}\right ) \log (1-x)\right )} \, dx+\frac {3}{2} \int \frac {1}{(1+x) \left (3 \left (1+\frac {2 e^{20}}{3}\right ) x-\left (1+e^{20}\right ) \log (1-x)\right )} \, dx+2 \int \frac {1}{3 \left (1+\frac {2 e^{20}}{3}\right ) x-\left (1+e^{20}\right ) \log (1-x)} \, dx+2 \int \left (\frac {1}{2 (-1-x) \left (3 \left (1+\frac {2 e^{20}}{3}\right ) x-\left (1+e^{20}\right ) \log (1-x)\right )}+\frac {1}{2 (-1+x) \left (3 \left (1+\frac {2 e^{20}}{3}\right ) x-\left (1+e^{20}\right ) \log (1-x)\right )}\right ) \, dx+3 \int \frac {x}{3 \left (1+\frac {2 e^{20}}{3}\right ) x-\left (1+e^{20}\right ) \log (1-x)} \, dx+\frac {7}{2} \int \frac {1}{(-1-x) \left (3 \left (1+\frac {2 e^{20}}{3}\right ) x-\left (1+e^{20}\right ) \log (1-x)\right )} \, dx+\frac {7}{2} \int \frac {1}{(1-x) \left (3 \left (1+\frac {2 e^{20}}{3}\right ) x-\left (1+e^{20}\right ) \log (1-x)\right )} \, dx+e^{20} \int \frac {1}{3 \left (1+\frac {2 e^{20}}{3}\right ) x-\left (1+e^{20}\right ) \log (1-x)} \, dx+e^{20} \int \frac {1}{(1-x) \left (3 \left (1+\frac {2 e^{20}}{3}\right ) x-\left (1+e^{20}\right ) \log (1-x)\right )} \, dx+\left (2 e^{20}\right ) \int \frac {1}{(-1-x) \left (3 \left (1+\frac {2 e^{20}}{3}\right ) x-\left (1+e^{20}\right ) \log (1-x)\right )} \, dx+\left (2 e^{20}\right ) \int \frac {x}{3 \left (1+\frac {2 e^{20}}{3}\right ) x-\left (1+e^{20}\right ) \log (1-x)} \, dx+\left (-3-2 e^{20}\right ) \int \left (\frac {1}{3 \left (1+\frac {2 e^{20}}{3}\right ) x-\left (1+e^{20}\right ) \log (1-x)}+\frac {1}{(-1-x) \left (3 \left (1+\frac {2 e^{20}}{3}\right ) x-\left (1+e^{20}\right ) \log (1-x)\right )}\right ) \, dx-\int \frac {x \left (4+3 e^{20}-\left (3+2 e^{20}\right ) x\right )}{(1-x) \left (3 \left (1+\frac {2 e^{20}}{3}\right ) x-\left (1+e^{20}\right ) \log (1-x)\right )} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 40, normalized size = 1.29 \begin {gather*} x \log \left (\frac {x \left (-\left (\left (3+2 e^{20}\right ) x\right )+\left (1+e^{20}\right ) \log (1-x)\right )}{\left (1+e^{20}\right ) (1+x)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.76, size = 43, normalized size = 1.39 \begin {gather*} x \log \left (-\frac {2 \, x^{2} e^{20} + 3 \, x^{2} - {\left (x e^{20} + x\right )} \log \left (-x + 1\right )}{{\left (x + 1\right )} e^{20} + x + 1}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.76, size = 48, normalized size = 1.55 \begin {gather*} x \log \left (-2 \, x^{2} e^{20} + x e^{20} \log \left (-x + 1\right ) - 3 \, x^{2} + x \log \left (-x + 1\right )\right ) - x \log \left (x e^{20} + x + e^{20} + 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.59, size = 595, normalized size = 19.19
method | result | size |
risch | \(x \ln \left (\left (x -\frac {\ln \left (1-x \right )}{2}\right ) {\mathrm e}^{20}+\frac {3 x}{2}-\frac {\ln \left (1-x \right )}{2}\right )-\ln \left (x +1\right ) x +x \ln \relax (x )+\frac {i \pi x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i x \left (-\left (x -\frac {\ln \left (1-x \right )}{2}\right ) {\mathrm e}^{20}-\frac {3 x}{2}+\frac {\ln \left (1-x \right )}{2}\right )}{x +1}\right )^{2}}{2}-\frac {i \pi x \,\mathrm {csgn}\left (\frac {i}{x +1}\right ) \mathrm {csgn}\left (i \left (-\left (x -\frac {\ln \left (1-x \right )}{2}\right ) {\mathrm e}^{20}-\frac {3 x}{2}+\frac {\ln \left (1-x \right )}{2}\right )\right ) \mathrm {csgn}\left (\frac {i \left (-\left (x -\frac {\ln \left (1-x \right )}{2}\right ) {\mathrm e}^{20}-\frac {3 x}{2}+\frac {\ln \left (1-x \right )}{2}\right )}{x +1}\right )}{2}-\frac {i \pi x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i \left (-\left (x -\frac {\ln \left (1-x \right )}{2}\right ) {\mathrm e}^{20}-\frac {3 x}{2}+\frac {\ln \left (1-x \right )}{2}\right )}{x +1}\right ) \mathrm {csgn}\left (\frac {i x \left (-\left (x -\frac {\ln \left (1-x \right )}{2}\right ) {\mathrm e}^{20}-\frac {3 x}{2}+\frac {\ln \left (1-x \right )}{2}\right )}{x +1}\right )}{2}+\frac {i \pi x \mathrm {csgn}\left (\frac {i \left (-\left (x -\frac {\ln \left (1-x \right )}{2}\right ) {\mathrm e}^{20}-\frac {3 x}{2}+\frac {\ln \left (1-x \right )}{2}\right )}{x +1}\right )^{3}}{2}+\frac {i \pi x \,\mathrm {csgn}\left (\frac {i}{x +1}\right ) \mathrm {csgn}\left (\frac {i \left (-\left (x -\frac {\ln \left (1-x \right )}{2}\right ) {\mathrm e}^{20}-\frac {3 x}{2}+\frac {\ln \left (1-x \right )}{2}\right )}{x +1}\right )^{2}}{2}-\frac {i \pi x \,\mathrm {csgn}\left (i \left (-\left (x -\frac {\ln \left (1-x \right )}{2}\right ) {\mathrm e}^{20}-\frac {3 x}{2}+\frac {\ln \left (1-x \right )}{2}\right )\right ) \mathrm {csgn}\left (\frac {i \left (-\left (x -\frac {\ln \left (1-x \right )}{2}\right ) {\mathrm e}^{20}-\frac {3 x}{2}+\frac {\ln \left (1-x \right )}{2}\right )}{x +1}\right )^{2}}{2}-\frac {i \pi x \,\mathrm {csgn}\left (\frac {i \left (-\left (x -\frac {\ln \left (1-x \right )}{2}\right ) {\mathrm e}^{20}-\frac {3 x}{2}+\frac {\ln \left (1-x \right )}{2}\right )}{x +1}\right ) \mathrm {csgn}\left (\frac {i x \left (-\left (x -\frac {\ln \left (1-x \right )}{2}\right ) {\mathrm e}^{20}-\frac {3 x}{2}+\frac {\ln \left (1-x \right )}{2}\right )}{x +1}\right )^{2}}{2}-\frac {i \pi x \mathrm {csgn}\left (\frac {i x \left (-\left (x -\frac {\ln \left (1-x \right )}{2}\right ) {\mathrm e}^{20}-\frac {3 x}{2}+\frac {\ln \left (1-x \right )}{2}\right )}{x +1}\right )^{3}}{2}+i x \pi -i \pi x \mathrm {csgn}\left (\frac {i x \left (-\left (x -\frac {\ln \left (1-x \right )}{2}\right ) {\mathrm e}^{20}-\frac {3 x}{2}+\frac {\ln \left (1-x \right )}{2}\right )}{x +1}\right )^{2}-\ln \left ({\mathrm e}^{20}+1\right ) x +x \ln \relax (2)\) | \(595\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.51, size = 60, normalized size = 1.94 \begin {gather*} -x {\left (\log \left (-e^{16} + e^{12} - e^{8} + e^{4} - 1\right ) + \log \left (e^{4} + 1\right )\right )} + x \log \left (x {\left (2 \, e^{20} + 3\right )} - {\left (e^{20} + 1\right )} \log \left (-x + 1\right )\right ) - x \log \left (x + 1\right ) + x \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.24, size = 43, normalized size = 1.39 \begin {gather*} x\,\ln \left (-\frac {2\,x^2\,{\mathrm {e}}^{20}-\ln \left (1-x\right )\,\left (x+x\,{\mathrm {e}}^{20}\right )+3\,x^2}{x+{\mathrm {e}}^{20}\,\left (x+1\right )+1}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.23, size = 37, normalized size = 1.19 \begin {gather*} x \log {\left (\frac {- 2 x^{2} e^{20} - 3 x^{2} + \left (x + x e^{20}\right ) \log {\left (1 - x \right )}}{x + \left (x + 1\right ) e^{20} + 1} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________