3.56.78 \(\int \frac {-1+4 e^6 x+4 e^{6+x} x}{e^5 x} \, dx\)

Optimal. Leaf size=19 \[ -5+4 e \left (e^x+x\right )-\frac {\log (4 x)}{e^5} \]

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 19, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 4, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {12, 14, 2194, 43} \begin {gather*} 4 e x+4 e^{x+1}-\frac {\log (x)}{e^5} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(-1 + 4*E^6*x + 4*E^(6 + x)*x)/(E^5*x),x]

[Out]

4*E^(1 + x) + 4*E*x - Log[x]/E^5

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {-1+4 e^6 x+4 e^{6+x} x}{x} \, dx}{e^5}\\ &=\frac {\int \left (4 e^{6+x}+\frac {-1+4 e^6 x}{x}\right ) \, dx}{e^5}\\ &=\frac {\int \frac {-1+4 e^6 x}{x} \, dx}{e^5}+\frac {4 \int e^{6+x} \, dx}{e^5}\\ &=4 e^{1+x}+\frac {\int \left (4 e^6-\frac {1}{x}\right ) \, dx}{e^5}\\ &=4 e^{1+x}+4 e x-\frac {\log (x)}{e^5}\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 19, normalized size = 1.00 \begin {gather*} 4 e^{1+x}+4 e x-\frac {\log (x)}{e^5} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(-1 + 4*E^6*x + 4*E^(6 + x)*x)/(E^5*x),x]

[Out]

4*E^(1 + x) + 4*E*x - Log[x]/E^5

________________________________________________________________________________________

fricas [A]  time = 0.56, size = 19, normalized size = 1.00 \begin {gather*} {\left (4 \, x e^{6} + 4 \, e^{\left (x + 6\right )} - \log \relax (x)\right )} e^{\left (-5\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((4*x*exp(1)*exp(5)*exp(x)+4*x*exp(1)*exp(5)-1)/x/exp(5),x, algorithm="fricas")

[Out]

(4*x*e^6 + 4*e^(x + 6) - log(x))*e^(-5)

________________________________________________________________________________________

giac [A]  time = 0.23, size = 19, normalized size = 1.00 \begin {gather*} {\left (4 \, x e^{6} + 4 \, e^{\left (x + 6\right )} - \log \relax (x)\right )} e^{\left (-5\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((4*x*exp(1)*exp(5)*exp(x)+4*x*exp(1)*exp(5)-1)/x/exp(5),x, algorithm="giac")

[Out]

(4*x*e^6 + 4*e^(x + 6) - log(x))*e^(-5)

________________________________________________________________________________________

maple [A]  time = 0.05, size = 19, normalized size = 1.00




method result size



risch \(4 x \,{\mathrm e}-{\mathrm e}^{-5} \ln \relax (x )+4 \,{\mathrm e}^{x +1}\) \(19\)
norman \(4 x \,{\mathrm e}+4 \,{\mathrm e} \,{\mathrm e}^{x}-{\mathrm e}^{-5} \ln \relax (x )\) \(21\)
default \({\mathrm e}^{-5} \left (-\ln \relax (x )+4 x \,{\mathrm e} \,{\mathrm e}^{5}+4 \,{\mathrm e} \,{\mathrm e}^{5} {\mathrm e}^{x}\right )\) \(26\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((4*x*exp(1)*exp(5)*exp(x)+4*x*exp(1)*exp(5)-1)/x/exp(5),x,method=_RETURNVERBOSE)

[Out]

4*x*exp(1)-exp(-5)*ln(x)+4*exp(x+1)

________________________________________________________________________________________

maxima [A]  time = 0.36, size = 19, normalized size = 1.00 \begin {gather*} {\left (4 \, x e^{6} + 4 \, e^{\left (x + 6\right )} - \log \relax (x)\right )} e^{\left (-5\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((4*x*exp(1)*exp(5)*exp(x)+4*x*exp(1)*exp(5)-1)/x/exp(5),x, algorithm="maxima")

[Out]

(4*x*e^6 + 4*e^(x + 6) - log(x))*e^(-5)

________________________________________________________________________________________

mupad [B]  time = 3.45, size = 18, normalized size = 0.95 \begin {gather*} 4\,x\,\mathrm {e}+4\,\mathrm {e}\,{\mathrm {e}}^x-{\mathrm {e}}^{-5}\,\ln \relax (x) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(-5)*(4*x*exp(6) + 4*x*exp(6)*exp(x) - 1))/x,x)

[Out]

4*x*exp(1) + 4*exp(1)*exp(x) - exp(-5)*log(x)

________________________________________________________________________________________

sympy [A]  time = 0.11, size = 20, normalized size = 1.05 \begin {gather*} \frac {4 x e^{6} - \log {\relax (x )}}{e^{5}} + 4 e e^{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((4*x*exp(1)*exp(5)*exp(x)+4*x*exp(1)*exp(5)-1)/x/exp(5),x)

[Out]

(4*x*exp(6) - log(x))*exp(-5) + 4*E*exp(x)

________________________________________________________________________________________