Optimal. Leaf size=19 \[ -5+4 e \left (e^x+x\right )-\frac {\log (4 x)}{e^5} \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 19, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 4, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {12, 14, 2194, 43} \begin {gather*} 4 e x+4 e^{x+1}-\frac {\log (x)}{e^5} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 43
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {-1+4 e^6 x+4 e^{6+x} x}{x} \, dx}{e^5}\\ &=\frac {\int \left (4 e^{6+x}+\frac {-1+4 e^6 x}{x}\right ) \, dx}{e^5}\\ &=\frac {\int \frac {-1+4 e^6 x}{x} \, dx}{e^5}+\frac {4 \int e^{6+x} \, dx}{e^5}\\ &=4 e^{1+x}+\frac {\int \left (4 e^6-\frac {1}{x}\right ) \, dx}{e^5}\\ &=4 e^{1+x}+4 e x-\frac {\log (x)}{e^5}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 19, normalized size = 1.00 \begin {gather*} 4 e^{1+x}+4 e x-\frac {\log (x)}{e^5} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 19, normalized size = 1.00 \begin {gather*} {\left (4 \, x e^{6} + 4 \, e^{\left (x + 6\right )} - \log \relax (x)\right )} e^{\left (-5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 19, normalized size = 1.00 \begin {gather*} {\left (4 \, x e^{6} + 4 \, e^{\left (x + 6\right )} - \log \relax (x)\right )} e^{\left (-5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 19, normalized size = 1.00
method | result | size |
risch | \(4 x \,{\mathrm e}-{\mathrm e}^{-5} \ln \relax (x )+4 \,{\mathrm e}^{x +1}\) | \(19\) |
norman | \(4 x \,{\mathrm e}+4 \,{\mathrm e} \,{\mathrm e}^{x}-{\mathrm e}^{-5} \ln \relax (x )\) | \(21\) |
default | \({\mathrm e}^{-5} \left (-\ln \relax (x )+4 x \,{\mathrm e} \,{\mathrm e}^{5}+4 \,{\mathrm e} \,{\mathrm e}^{5} {\mathrm e}^{x}\right )\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 19, normalized size = 1.00 \begin {gather*} {\left (4 \, x e^{6} + 4 \, e^{\left (x + 6\right )} - \log \relax (x)\right )} e^{\left (-5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.45, size = 18, normalized size = 0.95 \begin {gather*} 4\,x\,\mathrm {e}+4\,\mathrm {e}\,{\mathrm {e}}^x-{\mathrm {e}}^{-5}\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 20, normalized size = 1.05 \begin {gather*} \frac {4 x e^{6} - \log {\relax (x )}}{e^{5}} + 4 e e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________