Optimal. Leaf size=26 \[ e^{\log ^2\left (-6+\log (5)+\frac {x}{\log (x)}\right )}+\frac {e^{x^2} x}{5} \]
________________________________________________________________________________________
Rubi [A] time = 1.59, antiderivative size = 26, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 8, integrand size = 104, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {6741, 12, 6742, 2226, 2204, 2212, 6688, 6706} \begin {gather*} \frac {e^{x^2} x}{5}+e^{\log ^2\left (\frac {x}{\log (x)}-6+\log (5)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2204
Rule 2212
Rule 2226
Rule 6688
Rule 6706
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{x^2} \left (x+2 x^3\right ) \log (x)+e^{x^2} \left (-6-12 x^2+\left (1+2 x^2\right ) \log (5)\right ) \log ^2(x)+e^{\log ^2\left (\frac {x+(-6+\log (5)) \log (x)}{\log (x)}\right )} (-10+10 \log (x)) \log \left (\frac {x+(-6+\log (5)) \log (x)}{\log (x)}\right )}{5 \log (x) \left (x-6 \left (1-\frac {\log (5)}{6}\right ) \log (x)\right )} \, dx\\ &=\frac {1}{5} \int \frac {e^{x^2} \left (x+2 x^3\right ) \log (x)+e^{x^2} \left (-6-12 x^2+\left (1+2 x^2\right ) \log (5)\right ) \log ^2(x)+e^{\log ^2\left (\frac {x+(-6+\log (5)) \log (x)}{\log (x)}\right )} (-10+10 \log (x)) \log \left (\frac {x+(-6+\log (5)) \log (x)}{\log (x)}\right )}{\log (x) \left (x-6 \left (1-\frac {\log (5)}{6}\right ) \log (x)\right )} \, dx\\ &=\frac {1}{5} \int \left (e^{x^2} \left (1+2 x^2\right )+\frac {10 e^{\log ^2\left (-6 \left (1-\frac {\log (5)}{6}\right )+\frac {x}{\log (x)}\right )} (-1+\log (x)) \log \left (-6 \left (1-\frac {\log (5)}{6}\right )+\frac {x}{\log (x)}\right )}{\log (x) \left (x-6 \left (1-\frac {\log (5)}{6}\right ) \log (x)\right )}\right ) \, dx\\ &=\frac {1}{5} \int e^{x^2} \left (1+2 x^2\right ) \, dx+2 \int \frac {e^{\log ^2\left (-6 \left (1-\frac {\log (5)}{6}\right )+\frac {x}{\log (x)}\right )} (-1+\log (x)) \log \left (-6 \left (1-\frac {\log (5)}{6}\right )+\frac {x}{\log (x)}\right )}{\log (x) \left (x-6 \left (1-\frac {\log (5)}{6}\right ) \log (x)\right )} \, dx\\ &=\frac {1}{5} \int \left (e^{x^2}+2 e^{x^2} x^2\right ) \, dx+2 \int \frac {e^{\log ^2\left (-6 \left (1-\frac {\log (5)}{6}\right )+\frac {x}{\log (x)}\right )} (-1+\log (x)) \log \left (-6 \left (1-\frac {\log (5)}{6}\right )+\frac {x}{\log (x)}\right )}{\log (x) (x+(-6+\log (5)) \log (x))} \, dx\\ &=e^{\log ^2\left (-6+\log (5)+\frac {x}{\log (x)}\right )}+\frac {1}{5} \int e^{x^2} \, dx+\frac {2}{5} \int e^{x^2} x^2 \, dx\\ &=e^{\log ^2\left (-6+\log (5)+\frac {x}{\log (x)}\right )}+\frac {e^{x^2} x}{5}+\frac {1}{10} \sqrt {\pi } \text {erfi}(x)-\frac {1}{5} \int e^{x^2} \, dx\\ &=e^{\log ^2\left (-6+\log (5)+\frac {x}{\log (x)}\right )}+\frac {e^{x^2} x}{5}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 29, normalized size = 1.12 \begin {gather*} \frac {1}{5} \left (5 e^{\log ^2\left (-6+\log (5)+\frac {x}{\log (x)}\right )}+e^{x^2} x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.83, size = 26, normalized size = 1.00 \begin {gather*} \frac {1}{5} \, x e^{\left (x^{2}\right )} + e^{\left (\log \left (\frac {{\left (\log \relax (5) - 6\right )} \log \relax (x) + x}{\log \relax (x)}\right )^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \mathit {undef} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.24, size = 178, normalized size = 6.85
method | result | size |
risch | \(\frac {{\mathrm e}^{x^{2}} x}{5}+{\mathrm e}^{\frac {\left (i \pi \mathrm {csgn}\left (\frac {i \left (\ln \relax (5) \ln \relax (x )-6 \ln \relax (x )+x \right )}{\ln \relax (x )}\right )^{3}-i \pi \mathrm {csgn}\left (\frac {i \left (\ln \relax (5) \ln \relax (x )-6 \ln \relax (x )+x \right )}{\ln \relax (x )}\right )^{2} \mathrm {csgn}\left (\frac {i}{\ln \relax (x )}\right )-i \pi \mathrm {csgn}\left (\frac {i \left (\ln \relax (5) \ln \relax (x )-6 \ln \relax (x )+x \right )}{\ln \relax (x )}\right )^{2} \mathrm {csgn}\left (i \left (\ln \relax (5) \ln \relax (x )-6 \ln \relax (x )+x \right )\right )+i \pi \,\mathrm {csgn}\left (\frac {i \left (\ln \relax (5) \ln \relax (x )-6 \ln \relax (x )+x \right )}{\ln \relax (x )}\right ) \mathrm {csgn}\left (\frac {i}{\ln \relax (x )}\right ) \mathrm {csgn}\left (i \left (\ln \relax (5) \ln \relax (x )-6 \ln \relax (x )+x \right )\right )+2 \ln \left (\ln \relax (x )\right )-2 \ln \left (\ln \relax (5) \ln \relax (x )-6 \ln \relax (x )+x \right )\right )^{2}}{4}}\) | \(178\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.54, size = 42, normalized size = 1.62 \begin {gather*} \frac {1}{5} \, x e^{\left (x^{2}\right )} + e^{\left (\log \left ({\left (\log \relax (5) - 6\right )} \log \relax (x) + x\right )^{2} - 2 \, \log \left ({\left (\log \relax (5) - 6\right )} \log \relax (x) + x\right ) \log \left (\log \relax (x)\right ) + \log \left (\log \relax (x)\right )^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.82, size = 28, normalized size = 1.08 \begin {gather*} {\mathrm {e}}^{{\ln \left (\frac {x-6\,\ln \relax (x)+\ln \relax (5)\,\ln \relax (x)}{\ln \relax (x)}\right )}^2}+\frac {x\,{\mathrm {e}}^{x^2}}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 12.91, size = 26, normalized size = 1.00 \begin {gather*} \frac {x e^{x^{2}}}{5} + e^{\log {\left (\frac {x + \left (-6 + \log {\relax (5 )}\right ) \log {\relax (x )}}{\log {\relax (x )}} \right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________