Optimal. Leaf size=30 \[ \log \left (\log \left (\frac {4}{3 \left (5+\frac {x}{4}\right ) x}\right )\right )-\log ^2(1+x \log (x)) \]
________________________________________________________________________________________
Rubi [F] time = 1.07, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-20-2 x+\left (-20 x-2 x^2\right ) \log (x)+\left (\left (-40 x-2 x^2\right ) \log \left (\frac {16}{60 x+3 x^2}\right )+\left (-40 x-2 x^2\right ) \log (x) \log \left (\frac {16}{60 x+3 x^2}\right )\right ) \log (1+x \log (x))}{\left (20 x+x^2\right ) \log \left (\frac {16}{60 x+3 x^2}\right )+\left (20 x^2+x^3\right ) \log (x) \log \left (\frac {16}{60 x+3 x^2}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-20-2 x+\left (-20 x-2 x^2\right ) \log (x)+\left (\left (-40 x-2 x^2\right ) \log \left (\frac {16}{60 x+3 x^2}\right )+\left (-40 x-2 x^2\right ) \log (x) \log \left (\frac {16}{60 x+3 x^2}\right )\right ) \log (1+x \log (x))}{x (20+x) (1+x \log (x)) \log \left (\frac {16}{x (60+3 x)}\right )} \, dx\\ &=\int \left (\frac {2 (-10-x)}{x (20+x) \log \left (\frac {16}{x (60+3 x)}\right )}-\frac {2 (1+\log (x)) \log (1+x \log (x))}{1+x \log (x)}\right ) \, dx\\ &=2 \int \frac {-10-x}{x (20+x) \log \left (\frac {16}{x (60+3 x)}\right )} \, dx-2 \int \frac {(1+\log (x)) \log (1+x \log (x))}{1+x \log (x)} \, dx\\ &=-\log ^2(1+x \log (x))+2 \int \frac {-10-x}{x (20+x) \log \left (\frac {16}{x (60+3 x)}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 35, normalized size = 1.17 \begin {gather*} -2 \left (\frac {1}{2} \log ^2(1+x \log (x))-\frac {1}{2} \log \left (\log \left (\frac {16}{60 x+3 x^2}\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.75, size = 25, normalized size = 0.83 \begin {gather*} -\log \left (x \log \relax (x) + 1\right )^{2} + \log \left (\log \left (\frac {16}{3 \, {\left (x^{2} + 20 \, x\right )}}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.32, size = 26, normalized size = 0.87 \begin {gather*} -\log \left (x \log \relax (x) + 1\right )^{2} + \log \left (-4 \, \log \relax (2) + \log \left (3 \, x + 60\right ) + \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 5.46, size = 33, normalized size = 1.10
method | result | size |
default | \(-\ln \left (x \ln \relax (x )+1\right )^{2}+\ln \left (-4 \ln \relax (2)+\ln \relax (3)-\ln \left (\frac {1}{x \left (20+x \right )}\right )\right )\) | \(33\) |
risch | \(-\ln \left (x \ln \relax (x )+1\right )^{2}+\ln \left (\pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i}{20+x}\right ) \mathrm {csgn}\left (\frac {i}{x \left (20+x \right )}\right )-\pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i}{x \left (20+x \right )}\right )^{2}-\pi \,\mathrm {csgn}\left (\frac {i}{20+x}\right ) \mathrm {csgn}\left (\frac {i}{x \left (20+x \right )}\right )^{2}+\pi \mathrm {csgn}\left (\frac {i}{x \left (20+x \right )}\right )^{3}-2 i \ln \relax (3)+8 i \ln \relax (2)-2 i \ln \relax (x )-2 i \ln \left (20+x \right )\right )\) | \(133\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -2 \, \int \frac {{\left ({\left (x^{2} + 20 \, x\right )} \log \relax (x) \log \left (\frac {16}{3 \, {\left (x^{2} + 20 \, x\right )}}\right ) + {\left (x^{2} + 20 \, x\right )} \log \left (\frac {16}{3 \, {\left (x^{2} + 20 \, x\right )}}\right )\right )} \log \left (x \log \relax (x) + 1\right ) + {\left (x^{2} + 10 \, x\right )} \log \relax (x) + x + 10}{{\left (x^{3} + 20 \, x^{2}\right )} \log \relax (x) \log \left (\frac {16}{3 \, {\left (x^{2} + 20 \, x\right )}}\right ) + {\left (x^{2} + 20 \, x\right )} \log \left (\frac {16}{3 \, {\left (x^{2} + 20 \, x\right )}}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.77, size = 27, normalized size = 0.90 \begin {gather*} \ln \left (\ln \left (\frac {16}{3\,x^2+60\,x}\right )\right )-{\ln \left (x\,\ln \relax (x)+1\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.77, size = 22, normalized size = 0.73 \begin {gather*} - \log {\left (x \log {\relax (x )} + 1 \right )}^{2} + \log {\left (\log {\left (\frac {16}{3 x^{2} + 60 x} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________