Optimal. Leaf size=27 \[ 2 x+\frac {1}{2} \left (5-\frac {10}{x}-x-\log \left (x^2+\log (x)\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.47, antiderivative size = 22, normalized size of antiderivative = 0.81, number of steps used = 8, number of rules used = 6, integrand size = 45, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.133, Rules used = {2561, 6741, 12, 6742, 14, 6684} \begin {gather*} -\frac {1}{2} \log \left (x^2+\log (x)\right )+\frac {3 x}{2}-\frac {5}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2561
Rule 6684
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-x+10 x^2-2 x^3+3 x^4+\left (10+3 x^2\right ) \log (x)}{x^2 \left (2 x^2+2 \log (x)\right )} \, dx\\ &=\int \frac {-x+10 x^2-2 x^3+3 x^4+\left (10+3 x^2\right ) \log (x)}{2 x^2 \left (x^2+\log (x)\right )} \, dx\\ &=\frac {1}{2} \int \frac {-x+10 x^2-2 x^3+3 x^4+\left (10+3 x^2\right ) \log (x)}{x^2 \left (x^2+\log (x)\right )} \, dx\\ &=\frac {1}{2} \int \left (\frac {10+3 x^2}{x^2}+\frac {-1-2 x^2}{x \left (x^2+\log (x)\right )}\right ) \, dx\\ &=\frac {1}{2} \int \frac {10+3 x^2}{x^2} \, dx+\frac {1}{2} \int \frac {-1-2 x^2}{x \left (x^2+\log (x)\right )} \, dx\\ &=-\frac {1}{2} \log \left (x^2+\log (x)\right )+\frac {1}{2} \int \left (3+\frac {10}{x^2}\right ) \, dx\\ &=-\frac {5}{x}+\frac {3 x}{2}-\frac {1}{2} \log \left (x^2+\log (x)\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 22, normalized size = 0.81 \begin {gather*} \frac {1}{2} \left (-\frac {10}{x}+3 x-\log \left (x^2+\log (x)\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 22, normalized size = 0.81 \begin {gather*} \frac {3 \, x^{2} - x \log \left (x^{2} + \log \relax (x)\right ) - 10}{2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 22, normalized size = 0.81 \begin {gather*} \frac {3}{2} \, x - \frac {5}{x} - \frac {1}{2} \, \log \left (-x^{2} - \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 22, normalized size = 0.81
method | result | size |
norman | \(\frac {-5+\frac {3 x^{2}}{2}}{x}-\frac {\ln \left (\ln \relax (x )+x^{2}\right )}{2}\) | \(22\) |
risch | \(\frac {3 x^{2}-10}{2 x}-\frac {\ln \left (\ln \relax (x )+x^{2}\right )}{2}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 22, normalized size = 0.81 \begin {gather*} \frac {3 \, x^{2} - 10}{2 \, x} - \frac {1}{2} \, \log \left (x^{2} + \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.53, size = 24, normalized size = 0.89 \begin {gather*} -\frac {\ln \left (\ln \relax (x)+x^2\right )}{2}-\frac {10\,x-3\,x^3}{2\,x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 17, normalized size = 0.63 \begin {gather*} \frac {3 x}{2} - \frac {\log {\left (x^{2} + \log {\relax (x )} \right )}}{2} - \frac {5}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________