Optimal. Leaf size=19 \[ e^{-3-\left (e^x+x-2 \log (5)\right ) \log ^2(x)} \]
________________________________________________________________________________________
Rubi [F] time = 10.07, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-3+\left (-e^x-x+2 \log (5)\right ) \log ^2(x)} \left (\left (-2 e^x-2 x+4 \log (5)\right ) \log (x)+\left (-x-e^x x\right ) \log ^2(x)\right )}{x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-3+\left (-e^x-x+2 \log (5)\right ) \log ^2(x)} \log (x) \left (-2 e^x-2 x+4 \log (5)-x \log (x)-e^x x \log (x)\right )}{x} \, dx\\ &=\int \left (-\frac {e^{-3+x+\left (-e^x-x+2 \log (5)\right ) \log ^2(x)} \log (x) (2+x \log (x))}{x}-\frac {e^{-3+\left (-e^x-x+2 \log (5)\right ) \log ^2(x)} \log (x) (2 x-4 \log (5)+x \log (x))}{x}\right ) \, dx\\ &=-\int \frac {e^{-3+x+\left (-e^x-x+2 \log (5)\right ) \log ^2(x)} \log (x) (2+x \log (x))}{x} \, dx-\int \frac {e^{-3+\left (-e^x-x+2 \log (5)\right ) \log ^2(x)} \log (x) (2 x-4 \log (5)+x \log (x))}{x} \, dx\\ &=-\int \left (\frac {2 e^{-3+\left (-e^x-x+2 \log (5)\right ) \log ^2(x)} (x-2 \log (5)) \log (x)}{x}+e^{-3+\left (-e^x-x+2 \log (5)\right ) \log ^2(x)} \log ^2(x)\right ) \, dx-\int \left (\frac {2 e^{-3+x+\left (-e^x-x+2 \log (5)\right ) \log ^2(x)} \log (x)}{x}+e^{-3+x+\left (-e^x-x+2 \log (5)\right ) \log ^2(x)} \log ^2(x)\right ) \, dx\\ &=-\left (2 \int \frac {e^{-3+x+\left (-e^x-x+2 \log (5)\right ) \log ^2(x)} \log (x)}{x} \, dx\right )-2 \int \frac {e^{-3+\left (-e^x-x+2 \log (5)\right ) \log ^2(x)} (x-2 \log (5)) \log (x)}{x} \, dx-\int e^{-3+\left (-e^x-x+2 \log (5)\right ) \log ^2(x)} \log ^2(x) \, dx-\int e^{-3+x+\left (-e^x-x+2 \log (5)\right ) \log ^2(x)} \log ^2(x) \, dx\\ &=-\left (2 \int \frac {e^{-3+x+\left (-e^x-x+2 \log (5)\right ) \log ^2(x)} \log (x)}{x} \, dx\right )-2 \int \left (e^{-3+\left (-e^x-x+2 \log (5)\right ) \log ^2(x)} \log (x)-\frac {2 e^{-3+\left (-e^x-x+2 \log (5)\right ) \log ^2(x)} \log (5) \log (x)}{x}\right ) \, dx-\int e^{-3+\left (-e^x-x+2 \log (5)\right ) \log ^2(x)} \log ^2(x) \, dx-\int e^{-3+x+\left (-e^x-x+2 \log (5)\right ) \log ^2(x)} \log ^2(x) \, dx\\ &=-\left (2 \int e^{-3+\left (-e^x-x+2 \log (5)\right ) \log ^2(x)} \log (x) \, dx\right )-2 \int \frac {e^{-3+x+\left (-e^x-x+2 \log (5)\right ) \log ^2(x)} \log (x)}{x} \, dx+(4 \log (5)) \int \frac {e^{-3+\left (-e^x-x+2 \log (5)\right ) \log ^2(x)} \log (x)}{x} \, dx-\int e^{-3+\left (-e^x-x+2 \log (5)\right ) \log ^2(x)} \log ^2(x) \, dx-\int e^{-3+x+\left (-e^x-x+2 \log (5)\right ) \log ^2(x)} \log ^2(x) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.67, size = 19, normalized size = 1.00 \begin {gather*} e^{-3-\left (e^x+x-2 \log (5)\right ) \log ^2(x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.17, size = 17, normalized size = 0.89 \begin {gather*} e^{\left (-{\left (x + e^{x} - 2 \, \log \relax (5)\right )} \log \relax (x)^{2} - 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 26, normalized size = 1.37 \begin {gather*} e^{\left (-x \log \relax (x)^{2} - e^{x} \log \relax (x)^{2} + 2 \, \log \relax (5) \log \relax (x)^{2} - 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 26, normalized size = 1.37
method | result | size |
risch | \(25^{\ln \relax (x )^{2}} {\mathrm e}^{-3-{\mathrm e}^{x} \ln \relax (x )^{2}-x \ln \relax (x )^{2}}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.73, size = 26, normalized size = 1.37 \begin {gather*} e^{\left (-x \log \relax (x)^{2} - e^{x} \log \relax (x)^{2} + 2 \, \log \relax (5) \log \relax (x)^{2} - 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.76, size = 28, normalized size = 1.47 \begin {gather*} 5^{2\,{\ln \relax (x)}^2}\,{\mathrm {e}}^{-3}\,{\mathrm {e}}^{-x\,{\ln \relax (x)}^2}\,{\mathrm {e}}^{-{\mathrm {e}}^x\,{\ln \relax (x)}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.55, size = 17, normalized size = 0.89 \begin {gather*} e^{\left (- x - e^{x} + 2 \log {\relax (5 )}\right ) \log {\relax (x )}^{2} - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________