Optimal. Leaf size=26 \[ x \left (2-\frac {e^{x^2}}{x^3 \left (2+\log \left (-3+e^x\right )\right )}\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 22.38, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-96 x^6+32 e^x x^6+e^{2 x^2} \left (30-24 x^2+e^x \left (-10-2 x+8 x^2\right )\right )+e^{x^2} \left (-96 x^3+96 x^5+e^x \left (32 x^3+8 x^4-32 x^5\right )\right )+\left (-144 x^6+48 e^x x^6+e^{2 x^2} \left (15-12 x^2+e^x \left (-5+4 x^2\right )\right )+e^{x^2} \left (-96 x^3+96 x^5+e^x \left (32 x^3+4 x^4-32 x^5\right )\right )\right ) \log \left (-3+e^x\right )+\left (-72 x^6+24 e^x x^6+e^{x^2} \left (-24 x^3+24 x^5+e^x \left (8 x^3-8 x^5\right )\right )\right ) \log ^2\left (-3+e^x\right )+\left (-12 x^6+4 e^x x^6\right ) \log ^3\left (-3+e^x\right )}{-24 x^6+8 e^x x^6+\left (-36 x^6+12 e^x x^6\right ) \log \left (-3+e^x\right )+\left (-18 x^6+6 e^x x^6\right ) \log ^2\left (-3+e^x\right )+\left (-3 x^6+e^x x^6\right ) \log ^3\left (-3+e^x\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (e^{x^2}-4 x^3-2 x^3 \log \left (-3+e^x\right )\right ) \left (-24 x^3+8 e^x x^3+6 e^{x^2} \left (-5+4 x^2\right )-2 e^{x+x^2} \left (-5-x+4 x^2\right )-\left (-3+e^x\right ) \left (-8 x^3+e^{x^2} \left (-5+4 x^2\right )\right ) \log \left (-3+e^x\right )+2 \left (-3+e^x\right ) x^3 \log ^2\left (-3+e^x\right )\right )}{\left (3-e^x\right ) x^6 \left (2+\log \left (-3+e^x\right )\right )^3} \, dx\\ &=\int \left (-\frac {96}{\left (-3+e^x\right ) \left (2+\log \left (-3+e^x\right )\right )^3}+\frac {32 e^x}{\left (-3+e^x\right ) \left (2+\log \left (-3+e^x\right )\right )^3}+\frac {32 \log \left (-3+e^x\right )}{\left (2+\log \left (-3+e^x\right )\right )^3}-\frac {48 \log \left (-3+e^x\right )}{\left (-3+e^x\right ) \left (2+\log \left (-3+e^x\right )\right )^3}+\frac {16 e^x \log \left (-3+e^x\right )}{\left (-3+e^x\right ) \left (2+\log \left (-3+e^x\right )\right )^3}+\frac {24 \log ^2\left (-3+e^x\right )}{\left (2+\log \left (-3+e^x\right )\right )^3}+\frac {4 \log ^3\left (-3+e^x\right )}{\left (2+\log \left (-3+e^x\right )\right )^3}-\frac {4 e^{x^2} \left (12-4 e^x-e^x x-12 x^2+4 e^x x^2+6 \log \left (-3+e^x\right )-2 e^x \log \left (-3+e^x\right )-6 x^2 \log \left (-3+e^x\right )+2 e^x x^2 \log \left (-3+e^x\right )\right )}{\left (-3+e^x\right ) x^3 \left (2+\log \left (-3+e^x\right )\right )^2}+\frac {e^{2 x^2} \left (30-10 e^x-2 e^x x-24 x^2+8 e^x x^2+15 \log \left (-3+e^x\right )-5 e^x \log \left (-3+e^x\right )-12 x^2 \log \left (-3+e^x\right )+4 e^x x^2 \log \left (-3+e^x\right )\right )}{\left (-3+e^x\right ) x^6 \left (2+\log \left (-3+e^x\right )\right )^3}\right ) \, dx\\ &=4 \int \frac {\log ^3\left (-3+e^x\right )}{\left (2+\log \left (-3+e^x\right )\right )^3} \, dx-4 \int \frac {e^{x^2} \left (12-4 e^x-e^x x-12 x^2+4 e^x x^2+6 \log \left (-3+e^x\right )-2 e^x \log \left (-3+e^x\right )-6 x^2 \log \left (-3+e^x\right )+2 e^x x^2 \log \left (-3+e^x\right )\right )}{\left (-3+e^x\right ) x^3 \left (2+\log \left (-3+e^x\right )\right )^2} \, dx+16 \int \frac {e^x \log \left (-3+e^x\right )}{\left (-3+e^x\right ) \left (2+\log \left (-3+e^x\right )\right )^3} \, dx+24 \int \frac {\log ^2\left (-3+e^x\right )}{\left (2+\log \left (-3+e^x\right )\right )^3} \, dx+32 \int \frac {e^x}{\left (-3+e^x\right ) \left (2+\log \left (-3+e^x\right )\right )^3} \, dx+32 \int \frac {\log \left (-3+e^x\right )}{\left (2+\log \left (-3+e^x\right )\right )^3} \, dx-48 \int \frac {\log \left (-3+e^x\right )}{\left (-3+e^x\right ) \left (2+\log \left (-3+e^x\right )\right )^3} \, dx-96 \int \frac {1}{\left (-3+e^x\right ) \left (2+\log \left (-3+e^x\right )\right )^3} \, dx+\int \frac {e^{2 x^2} \left (30-10 e^x-2 e^x x-24 x^2+8 e^x x^2+15 \log \left (-3+e^x\right )-5 e^x \log \left (-3+e^x\right )-12 x^2 \log \left (-3+e^x\right )+4 e^x x^2 \log \left (-3+e^x\right )\right )}{\left (-3+e^x\right ) x^6 \left (2+\log \left (-3+e^x\right )\right )^3} \, dx\\ &=\frac {e^{2 x^2} \left (6 x^2-2 e^x x^2+3 x^2 \log \left (-3+e^x\right )-e^x x^2 \log \left (-3+e^x\right )\right )}{\left (3-e^x\right ) x^7 \left (2+\log \left (-3+e^x\right )\right )^3}-\frac {4 e^{x^2} \left (6 x^2-2 e^x x^2+3 x^2 \log \left (-3+e^x\right )-e^x x^2 \log \left (-3+e^x\right )\right )}{\left (3-e^x\right ) x^4 \left (2+\log \left (-3+e^x\right )\right )^2}+4 \operatorname {Subst}\left (\int \frac {\log ^3(-3+x)}{x (2+\log (-3+x))^3} \, dx,x,e^x\right )+16 \operatorname {Subst}\left (\int \frac {\log (-3+x)}{(-3+x) (2+\log (-3+x))^3} \, dx,x,e^x\right )+24 \operatorname {Subst}\left (\int \frac {\log ^2(-3+x)}{x (2+\log (-3+x))^3} \, dx,x,e^x\right )+32 \operatorname {Subst}\left (\int \frac {1}{(-3+x) (2+\log (-3+x))^3} \, dx,x,e^x\right )+32 \operatorname {Subst}\left (\int \frac {\log (-3+x)}{x (2+\log (-3+x))^3} \, dx,x,e^x\right )-48 \operatorname {Subst}\left (\int \frac {\log (-3+x)}{(-3+x) x (2+\log (-3+x))^3} \, dx,x,e^x\right )-96 \operatorname {Subst}\left (\int \frac {1}{(-3+x) x (2+\log (-3+x))^3} \, dx,x,e^x\right )\\ &=\frac {e^{2 x^2} \left (6 x^2-2 e^x x^2+3 x^2 \log \left (-3+e^x\right )-e^x x^2 \log \left (-3+e^x\right )\right )}{\left (3-e^x\right ) x^7 \left (2+\log \left (-3+e^x\right )\right )^3}-\frac {4 e^{x^2} \left (6 x^2-2 e^x x^2+3 x^2 \log \left (-3+e^x\right )-e^x x^2 \log \left (-3+e^x\right )\right )}{\left (3-e^x\right ) x^4 \left (2+\log \left (-3+e^x\right )\right )^2}+4 \operatorname {Subst}\left (\int \frac {\log ^3(-3+x)}{x (2+\log (-3+x))^3} \, dx,x,e^x\right )+16 \operatorname {Subst}\left (\int \frac {\log (x)}{x (2+\log (x))^3} \, dx,x,-3+e^x\right )+24 \operatorname {Subst}\left (\int \frac {\log ^2(-3+x)}{x (2+\log (-3+x))^3} \, dx,x,e^x\right )+32 \operatorname {Subst}\left (\int \frac {\log (-3+x)}{x (2+\log (-3+x))^3} \, dx,x,e^x\right )+32 \operatorname {Subst}\left (\int \frac {1}{x (2+\log (x))^3} \, dx,x,-3+e^x\right )-48 \operatorname {Subst}\left (\int \left (-\frac {2}{(-3+x) x (2+\log (-3+x))^3}+\frac {1}{(-3+x) x (2+\log (-3+x))^2}\right ) \, dx,x,e^x\right )-96 \operatorname {Subst}\left (\int \left (\frac {1}{3 (-3+x) (2+\log (-3+x))^3}-\frac {1}{3 x (2+\log (-3+x))^3}\right ) \, dx,x,e^x\right )\\ &=\frac {e^{2 x^2} \left (6 x^2-2 e^x x^2+3 x^2 \log \left (-3+e^x\right )-e^x x^2 \log \left (-3+e^x\right )\right )}{\left (3-e^x\right ) x^7 \left (2+\log \left (-3+e^x\right )\right )^3}-\frac {4 e^{x^2} \left (6 x^2-2 e^x x^2+3 x^2 \log \left (-3+e^x\right )-e^x x^2 \log \left (-3+e^x\right )\right )}{\left (3-e^x\right ) x^4 \left (2+\log \left (-3+e^x\right )\right )^2}+4 \operatorname {Subst}\left (\int \frac {\log ^3(-3+x)}{x (2+\log (-3+x))^3} \, dx,x,e^x\right )+16 \operatorname {Subst}\left (\int \frac {x}{(2+x)^3} \, dx,x,\log \left (-3+e^x\right )\right )+24 \operatorname {Subst}\left (\int \frac {\log ^2(-3+x)}{x (2+\log (-3+x))^3} \, dx,x,e^x\right )+32 \operatorname {Subst}\left (\int \frac {1}{x^3} \, dx,x,2+\log \left (-3+e^x\right )\right )-32 \operatorname {Subst}\left (\int \frac {1}{(-3+x) (2+\log (-3+x))^3} \, dx,x,e^x\right )+32 \operatorname {Subst}\left (\int \frac {1}{x (2+\log (-3+x))^3} \, dx,x,e^x\right )+32 \operatorname {Subst}\left (\int \frac {\log (-3+x)}{x (2+\log (-3+x))^3} \, dx,x,e^x\right )-48 \operatorname {Subst}\left (\int \frac {1}{(-3+x) x (2+\log (-3+x))^2} \, dx,x,e^x\right )+96 \operatorname {Subst}\left (\int \frac {1}{(-3+x) x (2+\log (-3+x))^3} \, dx,x,e^x\right )\\ &=-\frac {16}{\left (2+\log \left (-3+e^x\right )\right )^2}+\frac {4 \log ^2\left (-3+e^x\right )}{\left (2+\log \left (-3+e^x\right )\right )^2}+\frac {e^{2 x^2} \left (6 x^2-2 e^x x^2+3 x^2 \log \left (-3+e^x\right )-e^x x^2 \log \left (-3+e^x\right )\right )}{\left (3-e^x\right ) x^7 \left (2+\log \left (-3+e^x\right )\right )^3}-\frac {4 e^{x^2} \left (6 x^2-2 e^x x^2+3 x^2 \log \left (-3+e^x\right )-e^x x^2 \log \left (-3+e^x\right )\right )}{\left (3-e^x\right ) x^4 \left (2+\log \left (-3+e^x\right )\right )^2}+4 \operatorname {Subst}\left (\int \frac {\log ^3(-3+x)}{x (2+\log (-3+x))^3} \, dx,x,e^x\right )+24 \operatorname {Subst}\left (\int \frac {\log ^2(-3+x)}{x (2+\log (-3+x))^3} \, dx,x,e^x\right )+32 \operatorname {Subst}\left (\int \frac {1}{x (2+\log (-3+x))^3} \, dx,x,e^x\right )+32 \operatorname {Subst}\left (\int \frac {\log (-3+x)}{x (2+\log (-3+x))^3} \, dx,x,e^x\right )-32 \operatorname {Subst}\left (\int \frac {1}{x (2+\log (x))^3} \, dx,x,-3+e^x\right )-48 \operatorname {Subst}\left (\int \left (\frac {1}{3 (-3+x) (2+\log (-3+x))^2}-\frac {1}{3 x (2+\log (-3+x))^2}\right ) \, dx,x,e^x\right )+96 \operatorname {Subst}\left (\int \left (\frac {1}{3 (-3+x) (2+\log (-3+x))^3}-\frac {1}{3 x (2+\log (-3+x))^3}\right ) \, dx,x,e^x\right )\\ &=-\frac {16}{\left (2+\log \left (-3+e^x\right )\right )^2}+\frac {4 \log ^2\left (-3+e^x\right )}{\left (2+\log \left (-3+e^x\right )\right )^2}+\frac {e^{2 x^2} \left (6 x^2-2 e^x x^2+3 x^2 \log \left (-3+e^x\right )-e^x x^2 \log \left (-3+e^x\right )\right )}{\left (3-e^x\right ) x^7 \left (2+\log \left (-3+e^x\right )\right )^3}-\frac {4 e^{x^2} \left (6 x^2-2 e^x x^2+3 x^2 \log \left (-3+e^x\right )-e^x x^2 \log \left (-3+e^x\right )\right )}{\left (3-e^x\right ) x^4 \left (2+\log \left (-3+e^x\right )\right )^2}+4 \operatorname {Subst}\left (\int \frac {\log ^3(-3+x)}{x (2+\log (-3+x))^3} \, dx,x,e^x\right )-16 \operatorname {Subst}\left (\int \frac {1}{(-3+x) (2+\log (-3+x))^2} \, dx,x,e^x\right )+16 \operatorname {Subst}\left (\int \frac {1}{x (2+\log (-3+x))^2} \, dx,x,e^x\right )+24 \operatorname {Subst}\left (\int \frac {\log ^2(-3+x)}{x (2+\log (-3+x))^3} \, dx,x,e^x\right )-32 \operatorname {Subst}\left (\int \frac {1}{x^3} \, dx,x,2+\log \left (-3+e^x\right )\right )+32 \operatorname {Subst}\left (\int \frac {1}{(-3+x) (2+\log (-3+x))^3} \, dx,x,e^x\right )+32 \operatorname {Subst}\left (\int \frac {\log (-3+x)}{x (2+\log (-3+x))^3} \, dx,x,e^x\right )\\ &=\frac {4 \log ^2\left (-3+e^x\right )}{\left (2+\log \left (-3+e^x\right )\right )^2}+\frac {e^{2 x^2} \left (6 x^2-2 e^x x^2+3 x^2 \log \left (-3+e^x\right )-e^x x^2 \log \left (-3+e^x\right )\right )}{\left (3-e^x\right ) x^7 \left (2+\log \left (-3+e^x\right )\right )^3}-\frac {4 e^{x^2} \left (6 x^2-2 e^x x^2+3 x^2 \log \left (-3+e^x\right )-e^x x^2 \log \left (-3+e^x\right )\right )}{\left (3-e^x\right ) x^4 \left (2+\log \left (-3+e^x\right )\right )^2}+4 \operatorname {Subst}\left (\int \frac {\log ^3(-3+x)}{x (2+\log (-3+x))^3} \, dx,x,e^x\right )+16 \operatorname {Subst}\left (\int \frac {1}{x (2+\log (-3+x))^2} \, dx,x,e^x\right )-16 \operatorname {Subst}\left (\int \frac {1}{x (2+\log (x))^2} \, dx,x,-3+e^x\right )+24 \operatorname {Subst}\left (\int \frac {\log ^2(-3+x)}{x (2+\log (-3+x))^3} \, dx,x,e^x\right )+32 \operatorname {Subst}\left (\int \frac {\log (-3+x)}{x (2+\log (-3+x))^3} \, dx,x,e^x\right )+32 \operatorname {Subst}\left (\int \frac {1}{x (2+\log (x))^3} \, dx,x,-3+e^x\right )\\ &=\frac {4 \log ^2\left (-3+e^x\right )}{\left (2+\log \left (-3+e^x\right )\right )^2}+\frac {e^{2 x^2} \left (6 x^2-2 e^x x^2+3 x^2 \log \left (-3+e^x\right )-e^x x^2 \log \left (-3+e^x\right )\right )}{\left (3-e^x\right ) x^7 \left (2+\log \left (-3+e^x\right )\right )^3}-\frac {4 e^{x^2} \left (6 x^2-2 e^x x^2+3 x^2 \log \left (-3+e^x\right )-e^x x^2 \log \left (-3+e^x\right )\right )}{\left (3-e^x\right ) x^4 \left (2+\log \left (-3+e^x\right )\right )^2}+4 \operatorname {Subst}\left (\int \frac {\log ^3(-3+x)}{x (2+\log (-3+x))^3} \, dx,x,e^x\right )-16 \operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,2+\log \left (-3+e^x\right )\right )+16 \operatorname {Subst}\left (\int \frac {1}{x (2+\log (-3+x))^2} \, dx,x,e^x\right )+24 \operatorname {Subst}\left (\int \frac {\log ^2(-3+x)}{x (2+\log (-3+x))^3} \, dx,x,e^x\right )+32 \operatorname {Subst}\left (\int \frac {1}{x^3} \, dx,x,2+\log \left (-3+e^x\right )\right )+32 \operatorname {Subst}\left (\int \frac {\log (-3+x)}{x (2+\log (-3+x))^3} \, dx,x,e^x\right )\\ &=-\frac {16}{\left (2+\log \left (-3+e^x\right )\right )^2}+\frac {4 \log ^2\left (-3+e^x\right )}{\left (2+\log \left (-3+e^x\right )\right )^2}+\frac {16}{2+\log \left (-3+e^x\right )}+\frac {e^{2 x^2} \left (6 x^2-2 e^x x^2+3 x^2 \log \left (-3+e^x\right )-e^x x^2 \log \left (-3+e^x\right )\right )}{\left (3-e^x\right ) x^7 \left (2+\log \left (-3+e^x\right )\right )^3}-\frac {4 e^{x^2} \left (6 x^2-2 e^x x^2+3 x^2 \log \left (-3+e^x\right )-e^x x^2 \log \left (-3+e^x\right )\right )}{\left (3-e^x\right ) x^4 \left (2+\log \left (-3+e^x\right )\right )^2}+4 \operatorname {Subst}\left (\int \frac {\log ^3(-3+x)}{x (2+\log (-3+x))^3} \, dx,x,e^x\right )+16 \operatorname {Subst}\left (\int \frac {1}{x (2+\log (-3+x))^2} \, dx,x,e^x\right )+24 \operatorname {Subst}\left (\int \frac {\log ^2(-3+x)}{x (2+\log (-3+x))^3} \, dx,x,e^x\right )+32 \operatorname {Subst}\left (\int \frac {\log (-3+x)}{x (2+\log (-3+x))^3} \, dx,x,e^x\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 38, normalized size = 1.46 \begin {gather*} \frac {\left (e^{x^2}-4 x^3-2 x^3 \log \left (-3+e^x\right )\right )^2}{x^5 \left (2+\log \left (-3+e^x\right )\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.28, size = 85, normalized size = 3.27 \begin {gather*} \frac {4 \, x^{6} \log \left (e^{x} - 3\right )^{2} + 16 \, x^{6} - 8 \, x^{3} e^{\left (x^{2}\right )} + 4 \, {\left (4 \, x^{6} - x^{3} e^{\left (x^{2}\right )}\right )} \log \left (e^{x} - 3\right ) + e^{\left (2 \, x^{2}\right )}}{x^{5} \log \left (e^{x} - 3\right )^{2} + 4 \, x^{5} \log \left (e^{x} - 3\right ) + 4 \, x^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.26, size = 87, normalized size = 3.35 \begin {gather*} \frac {4 \, x^{6} \log \left (e^{x} - 3\right )^{2} + 16 \, x^{6} \log \left (e^{x} - 3\right ) + 16 \, x^{6} - 4 \, x^{3} e^{\left (x^{2}\right )} \log \left (e^{x} - 3\right ) - 8 \, x^{3} e^{\left (x^{2}\right )} + e^{\left (2 \, x^{2}\right )}}{x^{5} \log \left (e^{x} - 3\right )^{2} + 4 \, x^{5} \log \left (e^{x} - 3\right ) + 4 \, x^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 45, normalized size = 1.73
method | result | size |
risch | \(4 x -\frac {{\mathrm e}^{x^{2}} \left (4 \ln \left ({\mathrm e}^{x}-3\right ) x^{3}+8 x^{3}-{\mathrm e}^{x^{2}}\right )}{x^{5} \left (\ln \left ({\mathrm e}^{x}-3\right )+2\right )^{2}}\) | \(45\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.53, size = 85, normalized size = 3.27 \begin {gather*} \frac {4 \, x^{6} \log \left (e^{x} - 3\right )^{2} + 16 \, x^{6} - 8 \, x^{3} e^{\left (x^{2}\right )} + 4 \, {\left (4 \, x^{6} - x^{3} e^{\left (x^{2}\right )}\right )} \log \left (e^{x} - 3\right ) + e^{\left (2 \, x^{2}\right )}}{x^{5} \log \left (e^{x} - 3\right )^{2} + 4 \, x^{5} \log \left (e^{x} - 3\right ) + 4 \, x^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {{\ln \left ({\mathrm {e}}^x-3\right )}^3\,\left (4\,x^6\,{\mathrm {e}}^x-12\,x^6\right )+32\,x^6\,{\mathrm {e}}^x-{\mathrm {e}}^{2\,x^2}\,\left ({\mathrm {e}}^x\,\left (-8\,x^2+2\,x+10\right )+24\,x^2-30\right )+{\ln \left ({\mathrm {e}}^x-3\right )}^2\,\left (24\,x^6\,{\mathrm {e}}^x+{\mathrm {e}}^{x^2}\,\left ({\mathrm {e}}^x\,\left (8\,x^3-8\,x^5\right )-24\,x^3+24\,x^5\right )-72\,x^6\right )+{\mathrm {e}}^{x^2}\,\left ({\mathrm {e}}^x\,\left (-32\,x^5+8\,x^4+32\,x^3\right )-96\,x^3+96\,x^5\right )+\ln \left ({\mathrm {e}}^x-3\right )\,\left (48\,x^6\,{\mathrm {e}}^x+{\mathrm {e}}^{2\,x^2}\,\left ({\mathrm {e}}^x\,\left (4\,x^2-5\right )-12\,x^2+15\right )+{\mathrm {e}}^{x^2}\,\left ({\mathrm {e}}^x\,\left (-32\,x^5+4\,x^4+32\,x^3\right )-96\,x^3+96\,x^5\right )-144\,x^6\right )-96\,x^6}{{\ln \left ({\mathrm {e}}^x-3\right )}^3\,\left (x^6\,{\mathrm {e}}^x-3\,x^6\right )+{\ln \left ({\mathrm {e}}^x-3\right )}^2\,\left (6\,x^6\,{\mathrm {e}}^x-18\,x^6\right )+8\,x^6\,{\mathrm {e}}^x+\ln \left ({\mathrm {e}}^x-3\right )\,\left (12\,x^6\,{\mathrm {e}}^x-36\,x^6\right )-24\,x^6} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.37, size = 65, normalized size = 2.50 \begin {gather*} 4 x + \frac {- 4 x^{3} e^{x^{2}} \log {\left (e^{x} - 3 \right )} - 8 x^{3} e^{x^{2}} + e^{2 x^{2}}}{x^{5} \log {\left (e^{x} - 3 \right )}^{2} + 4 x^{5} \log {\left (e^{x} - 3 \right )} + 4 x^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________