Optimal. Leaf size=22 \[ \frac {10 (1+x) \log \left (e^{-2-x} (1+x) \log (4)\right )}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 29, normalized size of antiderivative = 1.32, number of steps used = 4, number of rules used = 3, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.115, Rules used = {14, 2551, 31} \begin {gather*} -10 x+10 \log (x+1)+\frac {10 \log \left (e^{-x-2} (x+1) \log (4)\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 31
Rule 2551
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-10-\frac {10 \log \left (e^{-2-x} (1+x) \log (4)\right )}{x^2}\right ) \, dx\\ &=-10 x-10 \int \frac {\log \left (e^{-2-x} (1+x) \log (4)\right )}{x^2} \, dx\\ &=-10 x+\frac {10 \log \left (e^{-2-x} (1+x) \log (4)\right )}{x}-10 \int \frac {1}{-1-x} \, dx\\ &=-10 x+10 \log (1+x)+\frac {10 \log \left (e^{-2-x} (1+x) \log (4)\right )}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 29, normalized size = 1.32 \begin {gather*} -10 x+10 \log (1+x)+\frac {10 \log \left (e^{-2-x} (1+x) \log (4)\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.57, size = 22, normalized size = 1.00 \begin {gather*} \frac {10 \, {\left (x + 1\right )} \log \left (2 \, {\left (x + 1\right )} e^{\left (-x - 2\right )} \log \relax (2)\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 31, normalized size = 1.41 \begin {gather*} -10 \, x + \frac {10 \, {\left (\log \relax (2) + \log \left (\log \relax (2)\right ) - 2\right )}}{x} + \frac {10 \, \log \left (x + 1\right )}{x} + 10 \, \log \left (x + 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.20, size = 39, normalized size = 1.77
method | result | size |
norman | \(\frac {10 \ln \left (2 \left (x +1\right ) \ln \relax (2) {\mathrm e}^{-x -2}\right ) x +10 \ln \left (2 \left (x +1\right ) \ln \relax (2) {\mathrm e}^{-x -2}\right )}{x}\) | \(39\) |
default | \(-10 x +\frac {10 \ln \relax (2)}{x}+\frac {10 \ln \left (\ln \relax (2)\right )}{x}+\frac {10 \ln \left (\left (x +1\right ) {\mathrm e}^{-x -2}\right )}{x}+10 \ln \left (-x -1\right )\) | \(44\) |
risch | \(-\frac {10 \ln \left ({\mathrm e}^{2+x}\right )}{x}+\frac {-5 i \pi \,\mathrm {csgn}\left (i \left (x +1\right )\right ) \mathrm {csgn}\left (i {\mathrm e}^{-x -2}\right ) \mathrm {csgn}\left (i {\mathrm e}^{-x -2} \left (x +1\right )\right )+5 i \pi \,\mathrm {csgn}\left (i \left (x +1\right )\right ) \mathrm {csgn}\left (i {\mathrm e}^{-x -2} \left (x +1\right )\right )^{2}+5 i \pi \,\mathrm {csgn}\left (i {\mathrm e}^{-x -2}\right ) \mathrm {csgn}\left (i {\mathrm e}^{-x -2} \left (x +1\right )\right )^{2}-5 i \pi \mathrm {csgn}\left (i {\mathrm e}^{-x -2} \left (x +1\right )\right )^{3}+10 \ln \left (x +1\right ) x -10 x^{2}+10 \ln \relax (2)+10 \ln \left (\ln \relax (2)\right )+10 \ln \left (x +1\right )}{x}\) | \(153\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.46, size = 38, normalized size = 1.73 \begin {gather*} -10 \, x + \frac {10 \, \log \left (2 \, x e^{\left (-x - 2\right )} \log \relax (2) + 2 \, e^{\left (-x - 2\right )} \log \relax (2)\right )}{x} + 10 \, \log \left (x + 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.19, size = 22, normalized size = 1.00 \begin {gather*} \frac {10\,\left (x+1\right )\,\left (\ln \left (x+1\right )-x+\ln \relax (2)+\ln \left (\ln \relax (2)\right )-2\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 29, normalized size = 1.32 \begin {gather*} - 10 x + 10 \log {\left (x + 1 \right )} + \frac {10 \log {\left (\left (2 x + 2\right ) e^{- x - 2} \log {\relax (2 )} \right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________