Optimal. Leaf size=24 \[ -6+e^{\frac {e^{x+\frac {5}{e^x+x+x^2}}}{x}} \]
________________________________________________________________________________________
Rubi [F] time = 139.03, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {e^{\frac {5+e^x x+x^2+x^3}{e^x+x+x^2}}}{x}+\frac {5+e^x x+x^2+x^3}{e^x+x+x^2}\right ) \left (e^{2 x} (-1+x)-5 x-11 x^2-x^3+x^4+x^5+e^x \left (-7 x+2 x^3\right )\right )}{e^{2 x} x^2+x^4+2 x^5+x^6+e^x \left (2 x^3+2 x^4\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\frac {e^{\frac {5+e^x x+x^2+x^3}{e^x+x+x^2}}}{x}+\frac {5+e^x x+x^2+x^3}{e^x+x+x^2}\right ) \left (e^{2 x} (-1+x)+e^x x \left (-7+2 x^2\right )+x \left (-5-11 x-x^2+x^3+x^4\right )\right )}{x^2 \left (e^x+x+x^2\right )^2} \, dx\\ &=\int \left (\frac {\exp \left (\frac {e^{\frac {5+e^x x+x^2+x^3}{e^x+x+x^2}}}{x}+\frac {5+e^x x+x^2+x^3}{e^x+x+x^2}\right ) (-1+x)}{x^2}+\frac {5 \exp \left (\frac {e^{\frac {5+e^x x+x^2+x^3}{e^x+x+x^2}}}{x}+\frac {5+e^x x+x^2+x^3}{e^x+x+x^2}\right ) \left (-1-x+x^2\right )}{x \left (e^x+x+x^2\right )^2}-\frac {5 \exp \left (\frac {e^{\frac {5+e^x x+x^2+x^3}{e^x+x+x^2}}}{x}+\frac {5+e^x x+x^2+x^3}{e^x+x+x^2}\right )}{x \left (e^x+x+x^2\right )}\right ) \, dx\\ &=5 \int \frac {\exp \left (\frac {e^{\frac {5+e^x x+x^2+x^3}{e^x+x+x^2}}}{x}+\frac {5+e^x x+x^2+x^3}{e^x+x+x^2}\right ) \left (-1-x+x^2\right )}{x \left (e^x+x+x^2\right )^2} \, dx-5 \int \frac {\exp \left (\frac {e^{\frac {5+e^x x+x^2+x^3}{e^x+x+x^2}}}{x}+\frac {5+e^x x+x^2+x^3}{e^x+x+x^2}\right )}{x \left (e^x+x+x^2\right )} \, dx+\int \frac {\exp \left (\frac {e^{\frac {5+e^x x+x^2+x^3}{e^x+x+x^2}}}{x}+\frac {5+e^x x+x^2+x^3}{e^x+x+x^2}\right ) (-1+x)}{x^2} \, dx\\ &=-\left (5 \int \frac {\exp \left (\frac {e^{\frac {5+e^x x+x^2+x^3}{e^x+x+x^2}}}{x}+\frac {5+e^x x+x^2+x^3}{e^x+x+x^2}\right )}{x \left (e^x+x+x^2\right )} \, dx\right )+5 \int \left (-\frac {\exp \left (\frac {e^{\frac {5+e^x x+x^2+x^3}{e^x+x+x^2}}}{x}+\frac {5+e^x x+x^2+x^3}{e^x+x+x^2}\right )}{\left (e^x+x+x^2\right )^2}-\frac {\exp \left (\frac {e^{\frac {5+e^x x+x^2+x^3}{e^x+x+x^2}}}{x}+\frac {5+e^x x+x^2+x^3}{e^x+x+x^2}\right )}{x \left (e^x+x+x^2\right )^2}+\frac {\exp \left (\frac {e^{\frac {5+e^x x+x^2+x^3}{e^x+x+x^2}}}{x}+\frac {5+e^x x+x^2+x^3}{e^x+x+x^2}\right ) x}{\left (e^x+x+x^2\right )^2}\right ) \, dx+\int \left (-\frac {\exp \left (\frac {e^{\frac {5+e^x x+x^2+x^3}{e^x+x+x^2}}}{x}+\frac {5+e^x x+x^2+x^3}{e^x+x+x^2}\right )}{x^2}+\frac {\exp \left (\frac {e^{\frac {5+e^x x+x^2+x^3}{e^x+x+x^2}}}{x}+\frac {5+e^x x+x^2+x^3}{e^x+x+x^2}\right )}{x}\right ) \, dx\\ &=-\left (5 \int \frac {\exp \left (\frac {e^{\frac {5+e^x x+x^2+x^3}{e^x+x+x^2}}}{x}+\frac {5+e^x x+x^2+x^3}{e^x+x+x^2}\right )}{\left (e^x+x+x^2\right )^2} \, dx\right )-5 \int \frac {\exp \left (\frac {e^{\frac {5+e^x x+x^2+x^3}{e^x+x+x^2}}}{x}+\frac {5+e^x x+x^2+x^3}{e^x+x+x^2}\right )}{x \left (e^x+x+x^2\right )^2} \, dx+5 \int \frac {\exp \left (\frac {e^{\frac {5+e^x x+x^2+x^3}{e^x+x+x^2}}}{x}+\frac {5+e^x x+x^2+x^3}{e^x+x+x^2}\right ) x}{\left (e^x+x+x^2\right )^2} \, dx-5 \int \frac {\exp \left (\frac {e^{\frac {5+e^x x+x^2+x^3}{e^x+x+x^2}}}{x}+\frac {5+e^x x+x^2+x^3}{e^x+x+x^2}\right )}{x \left (e^x+x+x^2\right )} \, dx-\int \frac {\exp \left (\frac {e^{\frac {5+e^x x+x^2+x^3}{e^x+x+x^2}}}{x}+\frac {5+e^x x+x^2+x^3}{e^x+x+x^2}\right )}{x^2} \, dx+\int \frac {\exp \left (\frac {e^{\frac {5+e^x x+x^2+x^3}{e^x+x+x^2}}}{x}+\frac {5+e^x x+x^2+x^3}{e^x+x+x^2}\right )}{x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.39, size = 22, normalized size = 0.92 \begin {gather*} e^{\frac {e^{x+\frac {5}{e^x+x+x^2}}}{x}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.57, size = 86, normalized size = 3.58 \begin {gather*} e^{\left (\frac {x^{4} + x^{3} + x^{2} e^{x} + {\left (x^{2} + x + e^{x}\right )} e^{\left (\frac {x^{3} + x^{2} + x e^{x} + 5}{x^{2} + x + e^{x}}\right )} + 5 \, x}{x^{3} + x^{2} + x e^{x}} - \frac {x^{3} + x^{2} + x e^{x} + 5}{x^{2} + x + e^{x}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (x^{5} + x^{4} - x^{3} - 11 \, x^{2} + {\left (x - 1\right )} e^{\left (2 \, x\right )} + {\left (2 \, x^{3} - 7 \, x\right )} e^{x} - 5 \, x\right )} e^{\left (\frac {x^{3} + x^{2} + x e^{x} + 5}{x^{2} + x + e^{x}} + \frac {e^{\left (\frac {x^{3} + x^{2} + x e^{x} + 5}{x^{2} + x + e^{x}}\right )}}{x}\right )}}{x^{6} + 2 \, x^{5} + x^{4} + x^{2} e^{\left (2 \, x\right )} + 2 \, {\left (x^{4} + x^{3}\right )} e^{x}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 29, normalized size = 1.21
method | result | size |
risch | \({\mathrm e}^{\frac {{\mathrm e}^{\frac {{\mathrm e}^{x} x +x^{3}+x^{2}+5}{{\mathrm e}^{x}+x^{2}+x}}}{x}}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.90, size = 19, normalized size = 0.79 \begin {gather*} e^{\left (\frac {e^{\left (x + \frac {5}{x^{2} + x + e^{x}}\right )}}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.80, size = 59, normalized size = 2.46 \begin {gather*} {\mathrm {e}}^{\frac {{\mathrm {e}}^{\frac {x\,{\mathrm {e}}^x}{x+{\mathrm {e}}^x+x^2}}\,{\mathrm {e}}^{\frac {x^2}{x+{\mathrm {e}}^x+x^2}}\,{\mathrm {e}}^{\frac {x^3}{x+{\mathrm {e}}^x+x^2}}\,{\mathrm {e}}^{\frac {5}{x+{\mathrm {e}}^x+x^2}}}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 6.71, size = 26, normalized size = 1.08 \begin {gather*} e^{\frac {e^{\frac {x^{3} + x^{2} + x e^{x} + 5}{x^{2} + x + e^{x}}}}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________