Optimal. Leaf size=27 \[ \frac {1}{4} \left (6-e^2-e^x \left (2+e^x-x\right )-2 x\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 34, normalized size of antiderivative = 1.26, number of steps used = 5, number of rules used = 3, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.150, Rules used = {12, 2194, 2176} \begin {gather*} -\frac {1}{4} e^x (1-x)-\frac {e^x}{4}-\frac {e^{2 x}}{4}-\frac {x}{2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{4} \int \left (-2-2 e^{2 x}+e^x (-1+x)\right ) \, dx\\ &=-\frac {x}{2}+\frac {1}{4} \int e^x (-1+x) \, dx-\frac {1}{2} \int e^{2 x} \, dx\\ &=-\frac {e^{2 x}}{4}-\frac {1}{4} e^x (1-x)-\frac {x}{2}-\frac {\int e^x \, dx}{4}\\ &=-\frac {e^x}{4}-\frac {e^{2 x}}{4}-\frac {1}{4} e^x (1-x)-\frac {x}{2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 22, normalized size = 0.81 \begin {gather*} \frac {1}{4} \left (-e^{2 x}+e^x (-2+x)-2 x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.14, size = 17, normalized size = 0.63 \begin {gather*} \frac {1}{4} \, {\left (x - 2\right )} e^{x} - \frac {1}{2} \, x - \frac {1}{4} \, e^{\left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 17, normalized size = 0.63 \begin {gather*} \frac {1}{4} \, {\left (x - 2\right )} e^{x} - \frac {1}{2} \, x - \frac {1}{4} \, e^{\left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.01, size = 18, normalized size = 0.67
method | result | size |
risch | \(-\frac {{\mathrm e}^{2 x}}{4}+\frac {{\mathrm e}^{x} \left (x -2\right )}{4}-\frac {x}{2}\) | \(18\) |
default | \(-\frac {x}{2}-\frac {{\mathrm e}^{2 x}}{4}+\frac {{\mathrm e}^{x} x}{4}-\frac {{\mathrm e}^{x}}{2}\) | \(20\) |
norman | \(-\frac {x}{2}-\frac {{\mathrm e}^{2 x}}{4}+\frac {{\mathrm e}^{x} x}{4}-\frac {{\mathrm e}^{x}}{2}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 21, normalized size = 0.78 \begin {gather*} \frac {1}{4} \, {\left (x - 1\right )} e^{x} - \frac {1}{2} \, x - \frac {1}{4} \, e^{\left (2 \, x\right )} - \frac {1}{4} \, e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.06, size = 19, normalized size = 0.70 \begin {gather*} \frac {x\,{\mathrm {e}}^x}{4}-\frac {{\mathrm {e}}^{2\,x}}{4}-\frac {{\mathrm {e}}^x}{2}-\frac {x}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 19, normalized size = 0.70 \begin {gather*} - \frac {x}{2} + \frac {\left (4 x - 8\right ) e^{x}}{16} - \frac {e^{2 x}}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________