Optimal. Leaf size=33 \[ x \left (2 x+x^4\right ) \left (x+\frac {-1+x}{5 x \left (x^2+\log (1-x)\right )}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.90, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-2 x+2 x^2-x^4-2 x^5+33 x^6+30 x^9+\left (-2+4 x-4 x^3+65 x^4+60 x^7\right ) \log (1-x)+\left (30 x^2+30 x^5\right ) \log ^2(1-x)}{5 x^4+10 x^2 \log (1-x)+5 \log ^2(1-x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-2 x+2 x^2-x^4-2 x^5+33 x^6+30 x^9+\left (-2+4 x-4 x^3+65 x^4+60 x^7\right ) \log (1-x)+\left (30 x^2+30 x^5\right ) \log ^2(1-x)}{5 \left (x^2+\log (1-x)\right )^2} \, dx\\ &=\frac {1}{5} \int \frac {-2 x+2 x^2-x^4-2 x^5+33 x^6+30 x^9+\left (-2+4 x-4 x^3+65 x^4+60 x^7\right ) \log (1-x)+\left (30 x^2+30 x^5\right ) \log ^2(1-x)}{\left (x^2+\log (1-x)\right )^2} \, dx\\ &=\frac {1}{5} \int \left (30 x^2 \left (1+x^3\right )-\frac {x \left (2-4 x+4 x^2+x^3-2 x^4+2 x^5\right )}{\left (x^2+\log (1-x)\right )^2}+\frac {-2+4 x-4 x^3+5 x^4}{x^2+\log (1-x)}\right ) \, dx\\ &=-\left (\frac {1}{5} \int \frac {x \left (2-4 x+4 x^2+x^3-2 x^4+2 x^5\right )}{\left (x^2+\log (1-x)\right )^2} \, dx\right )+\frac {1}{5} \int \frac {-2+4 x-4 x^3+5 x^4}{x^2+\log (1-x)} \, dx+6 \int x^2 \left (1+x^3\right ) \, dx\\ &=-\left (\frac {1}{5} \int \left (\frac {2 x}{\left (x^2+\log (1-x)\right )^2}-\frac {4 x^2}{\left (x^2+\log (1-x)\right )^2}+\frac {4 x^3}{\left (x^2+\log (1-x)\right )^2}+\frac {x^4}{\left (x^2+\log (1-x)\right )^2}-\frac {2 x^5}{\left (x^2+\log (1-x)\right )^2}+\frac {2 x^6}{\left (x^2+\log (1-x)\right )^2}\right ) \, dx\right )+\frac {1}{5} \int \left (-\frac {2}{x^2+\log (1-x)}+\frac {4 x}{x^2+\log (1-x)}-\frac {4 x^3}{x^2+\log (1-x)}+\frac {5 x^4}{x^2+\log (1-x)}\right ) \, dx+6 \int \left (x^2+x^5\right ) \, dx\\ &=2 x^3+x^6-\frac {1}{5} \int \frac {x^4}{\left (x^2+\log (1-x)\right )^2} \, dx-\frac {2}{5} \int \frac {x}{\left (x^2+\log (1-x)\right )^2} \, dx+\frac {2}{5} \int \frac {x^5}{\left (x^2+\log (1-x)\right )^2} \, dx-\frac {2}{5} \int \frac {x^6}{\left (x^2+\log (1-x)\right )^2} \, dx-\frac {2}{5} \int \frac {1}{x^2+\log (1-x)} \, dx+\frac {4}{5} \int \frac {x^2}{\left (x^2+\log (1-x)\right )^2} \, dx-\frac {4}{5} \int \frac {x^3}{\left (x^2+\log (1-x)\right )^2} \, dx+\frac {4}{5} \int \frac {x}{x^2+\log (1-x)} \, dx-\frac {4}{5} \int \frac {x^3}{x^2+\log (1-x)} \, dx+\int \frac {x^4}{x^2+\log (1-x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 38, normalized size = 1.15 \begin {gather*} \frac {1}{5} \left (10 x^3+5 x^6+\frac {(-1+x) \left (2 x+x^4\right )}{x^2+\log (1-x)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 55, normalized size = 1.67 \begin {gather*} \frac {5 \, x^{8} + 11 \, x^{5} - x^{4} + 2 \, x^{2} + 5 \, {\left (x^{6} + 2 \, x^{3}\right )} \log \left (-x + 1\right ) - 2 \, x}{5 \, {\left (x^{2} + \log \left (-x + 1\right )\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 40, normalized size = 1.21 \begin {gather*} x^{6} + 2 \, x^{3} + \frac {x^{5} - x^{4} + 2 \, x^{2} - 2 \, x}{5 \, {\left (x^{2} + \log \left (-x + 1\right )\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 33, normalized size = 1.00
method | result | size |
risch | \(x^{6}+2 x^{3}+\frac {\left (x^{3}+2\right ) x \left (x -1\right )}{5 x^{2}+5 \ln \left (1-x \right )}\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 55, normalized size = 1.67 \begin {gather*} \frac {5 \, x^{8} + 11 \, x^{5} - x^{4} + 2 \, x^{2} + 5 \, {\left (x^{6} + 2 \, x^{3}\right )} \log \left (-x + 1\right ) - 2 \, x}{5 \, {\left (x^{2} + \log \left (-x + 1\right )\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.65, size = 124, normalized size = 3.76 \begin {gather*} \frac {5\,x^3}{2}-\frac {\frac {x}{8}-\frac {1}{40}}{x^2-x+\frac {1}{2}}-\frac {2\,x^2}{5}-\frac {x}{4}+x^6+\frac {\frac {\left (x-1\right )\,\left (-3\,x^6+2\,x^5+x^4-2\,x^2+2\,x\right )}{5\,\left (2\,x^2-2\,x+1\right )}-\frac {\ln \left (1-x\right )\,\left (x-1\right )\,\left (5\,x^4-4\,x^3+4\,x-2\right )}{5\,\left (2\,x^2-2\,x+1\right )}}{\ln \left (1-x\right )+x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 34, normalized size = 1.03 \begin {gather*} x^{6} + 2 x^{3} + \frac {x^{5} - x^{4} + 2 x^{2} - 2 x}{5 x^{2} + 5 \log {\left (1 - x \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________