Optimal. Leaf size=33 \[ -1-e^3+x+\frac {1}{5} \left (x-e^{-5-\frac {e^{3-x}}{x}} x\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.46, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{3-x-\frac {e^{3-x} \left (1+5 e^{-3+x} x\right )}{x}} \left (-1-x-e^{-3+x} x+6 e^{-3+x+\frac {e^{3-x} \left (1+5 e^{-3+x} x\right )}{x}} x\right )}{5 x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int \frac {e^{3-x-\frac {e^{3-x} \left (1+5 e^{-3+x} x\right )}{x}} \left (-1-x-e^{-3+x} x+6 e^{-3+x+\frac {e^{3-x} \left (1+5 e^{-3+x} x\right )}{x}} x\right )}{x} \, dx\\ &=\frac {1}{5} \int \left (6-e^{-5-\frac {e^{3-x}}{x}}-\frac {e^{-2-\frac {e^{3-x}}{x}-x} (1+x)}{x}\right ) \, dx\\ &=\frac {6 x}{5}-\frac {1}{5} \int e^{-5-\frac {e^{3-x}}{x}} \, dx-\frac {1}{5} \int \frac {e^{-2-\frac {e^{3-x}}{x}-x} (1+x)}{x} \, dx\\ &=\frac {6 x}{5}-\frac {1}{5} \int e^{-5-\frac {e^{3-x}}{x}} \, dx-\frac {1}{5} \int \left (e^{-2-\frac {e^{3-x}}{x}-x}+\frac {e^{-2-\frac {e^{3-x}}{x}-x}}{x}\right ) \, dx\\ &=\frac {6 x}{5}-\frac {1}{5} \int e^{-5-\frac {e^{3-x}}{x}} \, dx-\frac {1}{5} \int e^{-2-\frac {e^{3-x}}{x}-x} \, dx-\frac {1}{5} \int \frac {e^{-2-\frac {e^{3-x}}{x}-x}}{x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.98, size = 27, normalized size = 0.82 \begin {gather*} \frac {1}{5} \left (6 x-e^{-5-\frac {e^{3-x}}{x}} x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.77, size = 63, normalized size = 1.91 \begin {gather*} -\frac {1}{5} \, {\left (x e^{\left (x - 3\right )} - 6 \, x e^{\left (\frac {{\left ({\left (x^{2} + 2 \, x\right )} e^{\left (x - 3\right )} + 1\right )} e^{\left (-x + 3\right )}}{x}\right )}\right )} e^{\left (-\frac {{\left ({\left (x^{2} + 2 \, x\right )} e^{\left (x - 3\right )} + 1\right )} e^{\left (-x + 3\right )}}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.44, size = 23, normalized size = 0.70 \begin {gather*} -\frac {1}{5} \, x e^{\left (-\frac {5 \, x + e^{\left (-x + 3\right )}}{x}\right )} + \frac {6}{5} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 29, normalized size = 0.88
method | result | size |
risch | \(\frac {6 x}{5}-\frac {x \,{\mathrm e}^{-\frac {\left (5 x \,{\mathrm e}^{x -3}+1\right ) {\mathrm e}^{3-x}}{x}}}{5}\) | \(29\) |
norman | \(\left (-\frac {x \,{\mathrm e}^{x -3}}{5}+\frac {6 x \,{\mathrm e}^{x -3} {\mathrm e}^{\frac {\left (5 x \,{\mathrm e}^{x -3}+1\right ) {\mathrm e}^{3-x}}{x}}}{5}\right ) {\mathrm e}^{3-x} {\mathrm e}^{-\frac {\left (5 x \,{\mathrm e}^{x -3}+1\right ) {\mathrm e}^{3-x}}{x}}\) | \(65\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {6}{5} \, x - \frac {1}{5} \, \int \frac {{\left (x e^{3} + x e^{x} + e^{3}\right )} e^{\left (-x - \frac {e^{\left (-x + 3\right )}}{x} - 5\right )}}{x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.58, size = 21, normalized size = 0.64 \begin {gather*} \frac {6\,x}{5}-\frac {x\,{\mathrm {e}}^{-\frac {{\mathrm {e}}^{-x}\,{\mathrm {e}}^3}{x}}\,{\mathrm {e}}^{-5}}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 11.21, size = 26, normalized size = 0.79 \begin {gather*} \frac {6 x}{5} - \frac {x e^{- \frac {\left (5 x e^{x - 3} + 1\right ) e^{3 - x}}{x}}}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________