Optimal. Leaf size=30 \[ 2 \left (-e^{-4 e^3+x}+\frac {\log ^2\left (e^{-x} x\right )}{-4+x}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.36, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-4 e^3+x} \left (-32 x+16 x^2-2 x^3\right )+\left (-16+20 x-4 x^2\right ) \log \left (e^{-x} x\right )-2 x \log ^2\left (e^{-x} x\right )}{16 x-8 x^2+x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-4 e^3+x} \left (-32 x+16 x^2-2 x^3\right )+\left (-16+20 x-4 x^2\right ) \log \left (e^{-x} x\right )-2 x \log ^2\left (e^{-x} x\right )}{x \left (16-8 x+x^2\right )} \, dx\\ &=\int \frac {e^{-4 e^3+x} \left (-32 x+16 x^2-2 x^3\right )+\left (-16+20 x-4 x^2\right ) \log \left (e^{-x} x\right )-2 x \log ^2\left (e^{-x} x\right )}{(-4+x)^2 x} \, dx\\ &=\int \left (-2 e^{-4 e^3+x}-\frac {2 \log \left (e^{-x} x\right ) \left (8-10 x+2 x^2+x \log \left (e^{-x} x\right )\right )}{(-4+x)^2 x}\right ) \, dx\\ &=-\left (2 \int e^{-4 e^3+x} \, dx\right )-2 \int \frac {\log \left (e^{-x} x\right ) \left (8-10 x+2 x^2+x \log \left (e^{-x} x\right )\right )}{(-4+x)^2 x} \, dx\\ &=-2 e^{-4 e^3+x}-2 \int \left (\frac {2 (-1+x) \log \left (e^{-x} x\right )}{(-4+x) x}+\frac {\log ^2\left (e^{-x} x\right )}{(-4+x)^2}\right ) \, dx\\ &=-2 e^{-4 e^3+x}-2 \int \frac {\log ^2\left (e^{-x} x\right )}{(-4+x)^2} \, dx-4 \int \frac {(-1+x) \log \left (e^{-x} x\right )}{(-4+x) x} \, dx\\ &=-2 e^{-4 e^3+x}-2 \int \frac {\log ^2\left (e^{-x} x\right )}{(-4+x)^2} \, dx-4 \int \left (\frac {3 \log \left (e^{-x} x\right )}{4 (-4+x)}+\frac {\log \left (e^{-x} x\right )}{4 x}\right ) \, dx\\ &=-2 e^{-4 e^3+x}-2 \int \frac {\log ^2\left (e^{-x} x\right )}{(-4+x)^2} \, dx-3 \int \frac {\log \left (e^{-x} x\right )}{-4+x} \, dx-\int \frac {\log \left (e^{-x} x\right )}{x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.23, size = 100, normalized size = 3.33 \begin {gather*} -\frac {32+8 e^{-4 e^3+x}-24 x-2 e^{-4 e^3+x} x+4 x^2+x^2 \log (4)-x \log (256)+(16-x (4+\log (4))+\log (256)) \log (x)+(-16+x (4+\log (4))-\log (256)) \log \left (e^{-x} x\right )+2 \log ^2\left (e^{-x} x\right )}{4-x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 35, normalized size = 1.17 \begin {gather*} -\frac {2 \, {\left ({\left (x - 4\right )} e^{\left (x - e^{\left (2 \, \log \relax (2) + 3\right )}\right )} - \log \left (x e^{\left (-x\right )}\right )^{2}\right )}}{x - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.61, size = 43, normalized size = 1.43 \begin {gather*} \frac {2 \, {\left (x^{2} - x e^{\left (x - 4 \, e^{3}\right )} - 2 \, x \log \relax (x) + \log \relax (x)^{2} - 4 \, x + 4 \, e^{\left (x - 4 \, e^{3}\right )} + 16\right )}}{x - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.31, size = 533, normalized size = 17.77
method | result | size |
risch | \(\frac {2 \ln \left ({\mathrm e}^{x}\right )^{2}}{x -4}-\frac {2 \left (-i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i {\mathrm e}^{-x}\right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{-x}\right )+i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{-x}\right )^{2}+i \pi \,\mathrm {csgn}\left (i {\mathrm e}^{-x}\right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{-x}\right )^{2}-i \pi \mathrm {csgn}\left (i x \,{\mathrm e}^{-x}\right )^{3}+2 \ln \relax (x )\right ) \ln \left ({\mathrm e}^{x}\right )}{x -4}-\frac {\left (\pi ^{2} {\mathrm e}^{4 \,{\mathrm e}^{3}} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i {\mathrm e}^{-x}\right )^{2} \mathrm {csgn}\left (i x \,{\mathrm e}^{-x}\right )^{2}-2 \pi ^{2} {\mathrm e}^{4 \,{\mathrm e}^{3}} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i {\mathrm e}^{-x}\right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{-x}\right )^{3}+\pi ^{2} {\mathrm e}^{4 \,{\mathrm e}^{3}} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x \,{\mathrm e}^{-x}\right )^{4}-2 \pi ^{2} {\mathrm e}^{4 \,{\mathrm e}^{3}} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i {\mathrm e}^{-x}\right )^{2} \mathrm {csgn}\left (i x \,{\mathrm e}^{-x}\right )^{3}+4 \pi ^{2} {\mathrm e}^{4 \,{\mathrm e}^{3}} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i {\mathrm e}^{-x}\right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{-x}\right )^{4}-2 \pi ^{2} {\mathrm e}^{4 \,{\mathrm e}^{3}} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{-x}\right )^{5}+\pi ^{2} {\mathrm e}^{4 \,{\mathrm e}^{3}} \mathrm {csgn}\left (i {\mathrm e}^{-x}\right )^{2} \mathrm {csgn}\left (i x \,{\mathrm e}^{-x}\right )^{4}-2 \pi ^{2} {\mathrm e}^{4 \,{\mathrm e}^{3}} \mathrm {csgn}\left (i {\mathrm e}^{-x}\right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{-x}\right )^{5}+\pi ^{2} {\mathrm e}^{4 \,{\mathrm e}^{3}} \mathrm {csgn}\left (i x \,{\mathrm e}^{-x}\right )^{6}+4 i \pi \,{\mathrm e}^{4 \,{\mathrm e}^{3}} \mathrm {csgn}\left (i x \,{\mathrm e}^{-x}\right )^{3} \ln \relax (x )+4 i \pi \,{\mathrm e}^{4 \,{\mathrm e}^{3}} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i {\mathrm e}^{-x}\right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{-x}\right ) \ln \relax (x )-4 i \pi \,{\mathrm e}^{4 \,{\mathrm e}^{3}} \mathrm {csgn}\left (i {\mathrm e}^{-x}\right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{-x}\right )^{2} \ln \relax (x )-4 i \pi \,{\mathrm e}^{4 \,{\mathrm e}^{3}} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{-x}\right )^{2} \ln \relax (x )-4 \,{\mathrm e}^{4 \,{\mathrm e}^{3}} \ln \relax (x )^{2}+4 \,{\mathrm e}^{x} x -16 \,{\mathrm e}^{x}\right ) {\mathrm e}^{-4 \,{\mathrm e}^{3}}}{2 \left (x -4\right )}\) | \(533\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {32 \, e^{\left (-4 \, e^{3} + 4\right )} E_{2}\left (-x + 4\right )}{x - 4} + \frac {2 \, {\left (x^{2} - 2 \, x \log \relax (x) + \log \relax (x)^{2} - 4 \, x + 16\right )}}{x - 4} - 2 \, \int \frac {{\left (x^{2} - 8 \, x\right )} e^{x}}{x^{2} e^{\left (4 \, e^{3}\right )} - 8 \, x e^{\left (4 \, e^{3}\right )} + 16 \, e^{\left (4 \, e^{3}\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.72, size = 41, normalized size = 1.37 \begin {gather*} \frac {2\,x^2}{x-4}-2\,{\mathrm {e}}^{-4\,{\mathrm {e}}^3}\,{\mathrm {e}}^x+\frac {2\,{\ln \relax (x)}^2}{x-4}-\frac {4\,x\,\ln \relax (x)}{x-4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.29, size = 24, normalized size = 0.80 \begin {gather*} - \frac {2 e^{x}}{e^{4 e^{3}}} + \frac {2 \log {\left (x e^{- x} \right )}^{2}}{x - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________