Optimal. Leaf size=39 \[ x \log \left ((5-x)^2 \left (3+e^{\frac {1}{2} \left (2-\frac {x}{-3+x}\right )}-x-\frac {x}{\log (2)}\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 75.54, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {90 x-114 x^2+46 x^3-6 x^4+e^{\frac {-6+x}{-6+2 x}} \left (21 x-21 x^2+4 x^3\right ) \log (2)+\left (198 x-186 x^2+58 x^3-6 x^4\right ) \log (2)+\left (90 x-78 x^2+22 x^3-2 x^4+e^{\frac {-6+x}{-6+2 x}} \left (-90+78 x-22 x^2+2 x^3\right ) \log (2)+\left (-270+324 x-144 x^2+28 x^3-2 x^4\right ) \log (2)\right ) \log \left (\frac {-25 x+10 x^2-x^3+e^{\frac {-6+x}{-6+2 x}} \left (25-10 x+x^2\right ) \log (2)+\left (75-55 x+13 x^2-x^3\right ) \log (2)}{\log (2)}\right )}{90 x-78 x^2+22 x^3-2 x^4+e^{\frac {-6+x}{-6+2 x}} \left (-90+78 x-22 x^2+2 x^3\right ) \log (2)+\left (-270+324 x-144 x^2+28 x^3-2 x^4\right ) \log (2)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {3}{-3+x}} \left (-90 x+114 x^2-46 x^3+6 x^4-e^{\frac {-6+x}{-6+2 x}} \left (21 x-21 x^2+4 x^3\right ) \log (2)-\left (198 x-186 x^2+58 x^3-6 x^4\right ) \log (2)-\left (90 x-78 x^2+22 x^3-2 x^4+e^{\frac {-6+x}{-6+2 x}} \left (-90+78 x-22 x^2+2 x^3\right ) \log (2)+\left (-270+324 x-144 x^2+28 x^3-2 x^4\right ) \log (2)\right ) \log \left (\frac {-25 x+10 x^2-x^3+e^{\frac {-6+x}{-6+2 x}} \left (25-10 x+x^2\right ) \log (2)+\left (75-55 x+13 x^2-x^3\right ) \log (2)}{\log (2)}\right )\right )}{2 (3-x)^2 (5-x) \left (e^{\frac {x}{-6+2 x}} \log (2)-e^{\frac {3}{-3+x}} x (1+\log (2))+e^{\frac {3}{-3+x}} \log (8)\right )} \, dx\\ &=\frac {1}{2} \int \frac {e^{\frac {3}{-3+x}} \left (-90 x+114 x^2-46 x^3+6 x^4-e^{\frac {-6+x}{-6+2 x}} \left (21 x-21 x^2+4 x^3\right ) \log (2)-\left (198 x-186 x^2+58 x^3-6 x^4\right ) \log (2)-\left (90 x-78 x^2+22 x^3-2 x^4+e^{\frac {-6+x}{-6+2 x}} \left (-90+78 x-22 x^2+2 x^3\right ) \log (2)+\left (-270+324 x-144 x^2+28 x^3-2 x^4\right ) \log (2)\right ) \log \left (\frac {-25 x+10 x^2-x^3+e^{\frac {-6+x}{-6+2 x}} \left (25-10 x+x^2\right ) \log (2)+\left (75-55 x+13 x^2-x^3\right ) \log (2)}{\log (2)}\right )\right )}{(3-x)^2 (5-x) \left (e^{\frac {x}{-6+2 x}} \log (2)-e^{\frac {3}{-3+x}} x (1+\log (2))+e^{\frac {3}{-3+x}} \log (8)\right )} \, dx\\ &=\frac {1}{2} \int \left (\frac {e^{\frac {3}{-3+x}} x \left (-90+x^3 (2+\log (4))-x^2 (25+\log (33554432))+x (93+\log (5070602400912917605986812821504))-\log (43556142965880123323311949751266331066368)\right )}{(3-x)^2 (5-x) \left (e^{\frac {x}{-6+2 x}} \log (2)-e^{\frac {3}{-3+x}} x (1+\log (2))+e^{\frac {3}{-3+x}} \log (8)\right )}+\frac {21 x-21 x^2+4 x^3-90 \log \left ((-5+x)^2 \left (e^{\frac {-6+x}{2 (-3+x)}}+\frac {-x (1+\log (2))+\log (8)}{\log (2)}\right )\right )+78 x \log \left ((-5+x)^2 \left (e^{\frac {-6+x}{2 (-3+x)}}+\frac {-x (1+\log (2))+\log (8)}{\log (2)}\right )\right )-22 x^2 \log \left ((-5+x)^2 \left (e^{\frac {-6+x}{2 (-3+x)}}+\frac {-x (1+\log (2))+\log (8)}{\log (2)}\right )\right )+2 x^3 \log \left ((-5+x)^2 \left (e^{\frac {-6+x}{2 (-3+x)}}+\frac {-x (1+\log (2))+\log (8)}{\log (2)}\right )\right )}{(-5+x) (-3+x)^2}\right ) \, dx\\ &=\frac {1}{2} \int \frac {e^{\frac {3}{-3+x}} x \left (-90+x^3 (2+\log (4))-x^2 (25+\log (33554432))+x (93+\log (5070602400912917605986812821504))-\log (43556142965880123323311949751266331066368)\right )}{(3-x)^2 (5-x) \left (e^{\frac {x}{-6+2 x}} \log (2)-e^{\frac {3}{-3+x}} x (1+\log (2))+e^{\frac {3}{-3+x}} \log (8)\right )} \, dx+\frac {1}{2} \int \frac {21 x-21 x^2+4 x^3-90 \log \left ((-5+x)^2 \left (e^{\frac {-6+x}{2 (-3+x)}}+\frac {-x (1+\log (2))+\log (8)}{\log (2)}\right )\right )+78 x \log \left ((-5+x)^2 \left (e^{\frac {-6+x}{2 (-3+x)}}+\frac {-x (1+\log (2))+\log (8)}{\log (2)}\right )\right )-22 x^2 \log \left ((-5+x)^2 \left (e^{\frac {-6+x}{2 (-3+x)}}+\frac {-x (1+\log (2))+\log (8)}{\log (2)}\right )\right )+2 x^3 \log \left ((-5+x)^2 \left (e^{\frac {-6+x}{2 (-3+x)}}+\frac {-x (1+\log (2))+\log (8)}{\log (2)}\right )\right )}{(-5+x) (-3+x)^2} \, dx\\ &=\frac {1}{2} \int \frac {e^{\frac {3}{-3+x}} x \left (-18+x^2 (-2-\log (4))-25 \log (4)+5 \log (33554432)+x (15-5 \log (4)+\log (33554432))-\log (5070602400912917605986812821504)\right )}{(3-x)^2 \left (e^{\frac {x}{-6+2 x}} \log (2)-e^{\frac {3}{-3+x}} x (1+\log (2))+e^{\frac {3}{-3+x}} \log (8)\right )} \, dx+\frac {1}{2} \int \left (\frac {x \left (21-21 x+4 x^2\right )}{(-5+x) (-3+x)^2}+2 \log \left ((-5+x)^2 \left (e^{\frac {-6+x}{2 (-3+x)}}+\frac {-x (1+\log (2))+\log (8)}{\log (2)}\right )\right )\right ) \, dx\\ &=\frac {1}{2} \int \frac {x \left (21-21 x+4 x^2\right )}{(-5+x) (-3+x)^2} \, dx+\frac {1}{2} \int \frac {e^{\frac {3}{-3+x}} x \left (-18-x^2 (2+\log (4))+x (15+\log (32768))-\log (134217728)\right )}{(3-x)^2 \left (e^{\frac {x}{-6+2 x}} \log (2)-e^{\frac {3}{-3+x}} x (1+\log (2))+e^{\frac {3}{-3+x}} \log (8)\right )} \, dx+\int \log \left ((-5+x)^2 \left (e^{\frac {-6+x}{2 (-3+x)}}+\frac {-x (1+\log (2))+\log (8)}{\log (2)}\right )\right ) \, dx\\ &=x \log \left ((5-x)^2 \left (e^{\frac {6-x}{2 (3-x)}}-\frac {x (1+\log (2))-\log (8)}{\log (2)}\right )\right )+\frac {1}{2} \int \left (4+\frac {20}{-5+x}+\frac {9}{(-3+x)^2}+\frac {3}{-3+x}\right ) \, dx+\frac {1}{2} \int \left (\frac {27 e^{\frac {3}{-3+x}}}{(3-x)^2 \left (e^{\frac {x}{-6+2 x}} \log (2)-e^{\frac {3}{-3+x}} x (1+\log (2))+e^{\frac {3}{-3+x}} \log (8)\right )}+\frac {e^{\frac {3}{-3+x}} x (-2-\log (4))}{e^{\frac {x}{-6+2 x}} \log (2)-e^{\frac {3}{-3+x}} x (1+\log (2))+e^{\frac {3}{-3+x}} \log (8)}+\frac {6 e^{\frac {3}{-3+x}} \log (4) \left (1-\frac {1+\log (32)}{\log (16)}\right )}{-e^{\frac {x}{-6+2 x}} \log (2)+e^{\frac {3}{-3+x}} x (1+\log (2))-e^{\frac {3}{-3+x}} \log (8)}+\frac {e^{\frac {3}{-3+x}} (-18-\log (512))}{(3-x) \left (e^{\frac {x}{-6+2 x}} \log (2)-e^{\frac {3}{-3+x}} x (1+\log (2))+e^{\frac {3}{-3+x}} \log (8)\right )}\right ) \, dx-\int \left (\frac {2 x}{-5+x}+\frac {x \left (-1+\frac {3 e^{\frac {-6+x}{2 (-3+x)}}}{2 (-3+x)^2}-\frac {1}{\log (2)}\right )}{e^{\frac {-6+x}{2 (-3+x)}}+\frac {-x (1+\log (2))+\log (8)}{\log (2)}}\right ) \, dx\\ &=\frac {9}{2 (3-x)}+2 x+\frac {3}{2} \log (3-x)+10 \log (5-x)+x \log \left ((5-x)^2 \left (e^{\frac {6-x}{2 (3-x)}}-\frac {x (1+\log (2))-\log (8)}{\log (2)}\right )\right )-2 \int \frac {x}{-5+x} \, dx+\frac {27}{2} \int \frac {e^{\frac {3}{-3+x}}}{(3-x)^2 \left (e^{\frac {x}{-6+2 x}} \log (2)-e^{\frac {3}{-3+x}} x (1+\log (2))+e^{\frac {3}{-3+x}} \log (8)\right )} \, dx+\frac {1}{2} (-2-\log (4)) \int \frac {e^{\frac {3}{-3+x}} x}{e^{\frac {x}{-6+2 x}} \log (2)-e^{\frac {3}{-3+x}} x (1+\log (2))+e^{\frac {3}{-3+x}} \log (8)} \, dx-\frac {(3 (1+\log (2)) \log (4)) \int \frac {e^{\frac {3}{-3+x}}}{-e^{\frac {x}{-6+2 x}} \log (2)+e^{\frac {3}{-3+x}} x (1+\log (2))-e^{\frac {3}{-3+x}} \log (8)} \, dx}{\log (16)}+\frac {1}{2} (-18-\log (512)) \int \frac {e^{\frac {3}{-3+x}}}{(3-x) \left (e^{\frac {x}{-6+2 x}} \log (2)-e^{\frac {3}{-3+x}} x (1+\log (2))+e^{\frac {3}{-3+x}} \log (8)\right )} \, dx-\int \frac {x \left (-1+\frac {3 e^{\frac {-6+x}{2 (-3+x)}}}{2 (-3+x)^2}-\frac {1}{\log (2)}\right )}{e^{\frac {-6+x}{2 (-3+x)}}+\frac {-x (1+\log (2))+\log (8)}{\log (2)}} \, dx\\ &=\frac {9}{2 (3-x)}+2 x+\frac {3}{2} \log (3-x)+10 \log (5-x)+x \log \left ((5-x)^2 \left (e^{\frac {6-x}{2 (3-x)}}-\frac {x (1+\log (2))-\log (8)}{\log (2)}\right )\right )-2 \int \left (1+\frac {5}{-5+x}\right ) \, dx+\frac {27}{2} \int \frac {e^{\frac {3}{-3+x}}}{(3-x)^2 \left (e^{\frac {x}{-6+2 x}} \log (2)-e^{\frac {3}{-3+x}} x (1+\log (2))+e^{\frac {3}{-3+x}} \log (8)\right )} \, dx+\frac {1}{2} (-2-\log (4)) \int \frac {e^{\frac {3}{-3+x}} x}{e^{\frac {x}{-6+2 x}} \log (2)-e^{\frac {3}{-3+x}} x (1+\log (2))+e^{\frac {3}{-3+x}} \log (8)} \, dx-\frac {(3 (1+\log (2)) \log (4)) \int \frac {e^{\frac {3}{-3+x}}}{-e^{\frac {x}{-6+2 x}} \log (2)+e^{\frac {3}{-3+x}} x (1+\log (2))-e^{\frac {3}{-3+x}} \log (8)} \, dx}{\log (16)}+\frac {(18+\log (512)) \operatorname {Subst}\left (\int \frac {\exp \left (\frac {3 x}{e^{\frac {x}{-6+2 x}} \log (2)-3 e^{\frac {3}{-3+x}} (1+\log (2))+e^{\frac {3}{-3+x}} \log (8)}+\frac {3 e^{\frac {3}{-3+x}} (1+\log (2))}{e^{\frac {x}{-6+2 x}} \log (2)-3 e^{\frac {3}{-3+x}} (1+\log (2))+e^{\frac {3}{-3+x}} \log (8)}\right )}{x} \, dx,x,\frac {e^{\frac {x}{-6+2 x}} \log (2)-e^{\frac {3}{-3+x}} x (1+\log (2))+e^{\frac {3}{-3+x}} \log (8)}{-3+x}\right )}{2 \left (-e^{\frac {x}{-6+2 x}} \log (2)+3 e^{\frac {3}{-3+x}} (1+\log (2))-e^{\frac {3}{-3+x}} \log (8)\right )}-\int \left (\frac {3 x}{2 (-3+x)^2}+\frac {e^{\frac {3}{-3+x}} x \left (-18-18 \log (2)+15 x (1+\log (2))-x^2 (2+\log (4))-\log (512)\right )}{2 (3-x)^2 \left (e^{\frac {x}{2 (-3+x)}} \log (2)-e^{\frac {3}{-3+x}} x (1+\log (2))+e^{\frac {3}{-3+x}} \log (8)\right )}\right ) \, dx\\ &=\frac {9}{2 (3-x)}+\frac {3}{2} \log (3-x)+x \log \left ((5-x)^2 \left (e^{\frac {6-x}{2 (3-x)}}-\frac {x (1+\log (2))-\log (8)}{\log (2)}\right )\right )-\frac {1}{2} \int \frac {e^{\frac {3}{-3+x}} x \left (-18-18 \log (2)+15 x (1+\log (2))-x^2 (2+\log (4))-\log (512)\right )}{(3-x)^2 \left (e^{\frac {x}{2 (-3+x)}} \log (2)-e^{\frac {3}{-3+x}} x (1+\log (2))+e^{\frac {3}{-3+x}} \log (8)\right )} \, dx-\frac {3}{2} \int \frac {x}{(-3+x)^2} \, dx+\frac {27}{2} \int \frac {e^{\frac {3}{-3+x}}}{(3-x)^2 \left (e^{\frac {x}{-6+2 x}} \log (2)-e^{\frac {3}{-3+x}} x (1+\log (2))+e^{\frac {3}{-3+x}} \log (8)\right )} \, dx+\frac {1}{2} (-2-\log (4)) \int \frac {e^{\frac {3}{-3+x}} x}{e^{\frac {x}{-6+2 x}} \log (2)-e^{\frac {3}{-3+x}} x (1+\log (2))+e^{\frac {3}{-3+x}} \log (8)} \, dx-\frac {(3 (1+\log (2)) \log (4)) \int \frac {e^{\frac {3}{-3+x}}}{-e^{\frac {x}{-6+2 x}} \log (2)+e^{\frac {3}{-3+x}} x (1+\log (2))-e^{\frac {3}{-3+x}} \log (8)} \, dx}{\log (16)}+\frac {(18+\log (512)) \operatorname {Subst}\left (\int \frac {\exp \left (-\frac {3 \left (x+e^{\frac {3}{-3+x}} (1+\log (2))\right )}{3 e^{\frac {3}{-3+x}}-e^{\frac {x}{2 (-3+x)}} \log (2)}\right )}{x} \, dx,x,\frac {e^{\frac {x}{-6+2 x}} \log (2)-e^{\frac {3}{-3+x}} x (1+\log (2))+e^{\frac {3}{-3+x}} \log (8)}{-3+x}\right )}{2 \left (-e^{\frac {x}{-6+2 x}} \log (2)+3 e^{\frac {3}{-3+x}} (1+\log (2))-e^{\frac {3}{-3+x}} \log (8)\right )}\\ &=\frac {9}{2 (3-x)}+\frac {3}{2} \log (3-x)+x \log \left ((5-x)^2 \left (e^{\frac {6-x}{2 (3-x)}}-\frac {x (1+\log (2))-\log (8)}{\log (2)}\right )\right )-\frac {1}{2} \int \left (\frac {27 e^{\frac {3}{-3+x}}}{(3-x)^2 \left (e^{\frac {x}{2 (-3+x)}} \log (2)-e^{\frac {3}{-3+x}} x (1+\log (2))+e^{\frac {3}{-3+x}} \log (8)\right )}+\frac {e^{\frac {3}{-3+x}} x (-2-\log (4))}{e^{\frac {x}{2 (-3+x)}} \log (2)-e^{\frac {3}{-3+x}} x (1+\log (2))+e^{\frac {3}{-3+x}} \log (8)}+\frac {e^{\frac {3}{-3+x}} (3+\log (8))}{e^{\frac {x}{2 (-3+x)}} \log (2)-e^{\frac {3}{-3+x}} x (1+\log (2))+e^{\frac {3}{-3+x}} \log (8)}+\frac {e^{\frac {3}{-3+x}} (-18-\log (512))}{(3-x) \left (e^{\frac {x}{2 (-3+x)}} \log (2)-e^{\frac {3}{-3+x}} x (1+\log (2))+e^{\frac {3}{-3+x}} \log (8)\right )}\right ) \, dx-\frac {3}{2} \int \left (\frac {3}{(-3+x)^2}+\frac {1}{-3+x}\right ) \, dx+\frac {27}{2} \int \frac {e^{\frac {3}{-3+x}}}{(3-x)^2 \left (e^{\frac {x}{-6+2 x}} \log (2)-e^{\frac {3}{-3+x}} x (1+\log (2))+e^{\frac {3}{-3+x}} \log (8)\right )} \, dx+\frac {1}{2} (-2-\log (4)) \int \frac {e^{\frac {3}{-3+x}} x}{e^{\frac {x}{-6+2 x}} \log (2)-e^{\frac {3}{-3+x}} x (1+\log (2))+e^{\frac {3}{-3+x}} \log (8)} \, dx-\frac {(3 (1+\log (2)) \log (4)) \int \frac {e^{\frac {3}{-3+x}}}{-e^{\frac {x}{-6+2 x}} \log (2)+e^{\frac {3}{-3+x}} x (1+\log (2))-e^{\frac {3}{-3+x}} \log (8)} \, dx}{\log (16)}+\frac {(18+\log (512)) \operatorname {Subst}\left (\int \frac {\exp \left (-\frac {3 \left (x+e^{\frac {3}{-3+x}} (1+\log (2))\right )}{3 e^{\frac {3}{-3+x}}-e^{\frac {x}{2 (-3+x)}} \log (2)}\right )}{x} \, dx,x,\frac {e^{\frac {x}{-6+2 x}} \log (2)-e^{\frac {3}{-3+x}} x (1+\log (2))+e^{\frac {3}{-3+x}} \log (8)}{-3+x}\right )}{2 \left (-e^{\frac {x}{-6+2 x}} \log (2)+3 e^{\frac {3}{-3+x}} (1+\log (2))-e^{\frac {3}{-3+x}} \log (8)\right )}\\ &=x \log \left ((5-x)^2 \left (e^{\frac {6-x}{2 (3-x)}}-\frac {x (1+\log (2))-\log (8)}{\log (2)}\right )\right )-\frac {27}{2} \int \frac {e^{\frac {3}{-3+x}}}{(3-x)^2 \left (e^{\frac {x}{2 (-3+x)}} \log (2)-e^{\frac {3}{-3+x}} x (1+\log (2))+e^{\frac {3}{-3+x}} \log (8)\right )} \, dx+\frac {27}{2} \int \frac {e^{\frac {3}{-3+x}}}{(3-x)^2 \left (e^{\frac {x}{-6+2 x}} \log (2)-e^{\frac {3}{-3+x}} x (1+\log (2))+e^{\frac {3}{-3+x}} \log (8)\right )} \, dx-\frac {1}{2} (-2-\log (4)) \int \frac {e^{\frac {3}{-3+x}} x}{e^{\frac {x}{2 (-3+x)}} \log (2)-e^{\frac {3}{-3+x}} x (1+\log (2))+e^{\frac {3}{-3+x}} \log (8)} \, dx+\frac {1}{2} (-2-\log (4)) \int \frac {e^{\frac {3}{-3+x}} x}{e^{\frac {x}{-6+2 x}} \log (2)-e^{\frac {3}{-3+x}} x (1+\log (2))+e^{\frac {3}{-3+x}} \log (8)} \, dx-\frac {1}{2} (3+\log (8)) \int \frac {e^{\frac {3}{-3+x}}}{e^{\frac {x}{2 (-3+x)}} \log (2)-e^{\frac {3}{-3+x}} x (1+\log (2))+e^{\frac {3}{-3+x}} \log (8)} \, dx-\frac {(3 (1+\log (2)) \log (4)) \int \frac {e^{\frac {3}{-3+x}}}{-e^{\frac {x}{-6+2 x}} \log (2)+e^{\frac {3}{-3+x}} x (1+\log (2))-e^{\frac {3}{-3+x}} \log (8)} \, dx}{\log (16)}-\frac {1}{2} (-18-\log (512)) \int \frac {e^{\frac {3}{-3+x}}}{(3-x) \left (e^{\frac {x}{2 (-3+x)}} \log (2)-e^{\frac {3}{-3+x}} x (1+\log (2))+e^{\frac {3}{-3+x}} \log (8)\right )} \, dx+\frac {(18+\log (512)) \operatorname {Subst}\left (\int \frac {\exp \left (-\frac {3 \left (x+e^{\frac {3}{-3+x}} (1+\log (2))\right )}{3 e^{\frac {3}{-3+x}}-e^{\frac {x}{2 (-3+x)}} \log (2)}\right )}{x} \, dx,x,\frac {e^{\frac {x}{-6+2 x}} \log (2)-e^{\frac {3}{-3+x}} x (1+\log (2))+e^{\frac {3}{-3+x}} \log (8)}{-3+x}\right )}{2 \left (-e^{\frac {x}{-6+2 x}} \log (2)+3 e^{\frac {3}{-3+x}} (1+\log (2))-e^{\frac {3}{-3+x}} \log (8)\right )}\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 3.65, size = 46, normalized size = 1.18 \begin {gather*} \frac {1}{2} \left (3+2 x \log \left ((-5+x)^2 \left (e^{\frac {-6+x}{2 (-3+x)}}+\frac {-x (1+\log (2))+\log (8)}{\log (2)}\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.91, size = 60, normalized size = 1.54 \begin {gather*} x \log \left (-\frac {x^{3} - {\left (x^{2} - 10 \, x + 25\right )} e^{\left (\frac {x - 6}{2 \, {\left (x - 3\right )}}\right )} \log \relax (2) - 10 \, x^{2} + {\left (x^{3} - 13 \, x^{2} + 55 \, x - 75\right )} \log \relax (2) + 25 \, x}{\log \relax (2)}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 6.01, size = 95, normalized size = 2.44 \begin {gather*} x \log \left (-x^{3} \log \relax (2) + x^{2} e^{\left (-\frac {x}{2 \, {\left (x - 3\right )}} + 1\right )} \log \relax (2) - x^{3} + 13 \, x^{2} \log \relax (2) - 10 \, x e^{\left (-\frac {x}{2 \, {\left (x - 3\right )}} + 1\right )} \log \relax (2) + 10 \, x^{2} - 55 \, x \log \relax (2) + 25 \, e^{\left (-\frac {x}{2 \, {\left (x - 3\right )}} + 1\right )} \log \relax (2) - 25 \, x + 75 \, \log \relax (2)\right ) - x \log \left (\log \relax (2)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 1.55, size = 137, normalized size = 3.51
method | result | size |
norman | \(\frac {x^{2} \ln \left (\frac {\left (x^{2}-10 x +25\right ) \ln \relax (2) {\mathrm e}^{\frac {x -6}{2 x -6}}+\left (-x^{3}+13 x^{2}-55 x +75\right ) \ln \relax (2)-x^{3}+10 x^{2}-25 x}{\ln \relax (2)}\right )-3 x \ln \left (\frac {\left (x^{2}-10 x +25\right ) \ln \relax (2) {\mathrm e}^{\frac {x -6}{2 x -6}}+\left (-x^{3}+13 x^{2}-55 x +75\right ) \ln \relax (2)-x^{3}+10 x^{2}-25 x}{\ln \relax (2)}\right )}{x -3}\) | \(137\) |
risch | \(x \ln \left (\left (x -{\mathrm e}^{\frac {x -6}{2 x -6}}-3\right ) \ln \relax (2)+x \right )+2 x \ln \left (x -5\right )-i \pi x \mathrm {csgn}\left (i \left (x -5\right )^{2} \left (\left (x -{\mathrm e}^{\frac {x -6}{2 x -6}}-3\right ) \ln \relax (2)+x \right )\right )^{2}-\frac {i \pi x \mathrm {csgn}\left (i \left (x -5\right )\right )^{2} \mathrm {csgn}\left (i \left (x -5\right )^{2}\right )}{2}+i \pi x \,\mathrm {csgn}\left (i \left (x -5\right )\right ) \mathrm {csgn}\left (i \left (x -5\right )^{2}\right )^{2}-\frac {i \pi x \mathrm {csgn}\left (i \left (x -5\right )^{2}\right )^{3}}{2}-\frac {i \pi x \,\mathrm {csgn}\left (i \left (x -5\right )^{2}\right ) \mathrm {csgn}\left (i \left (\left (x -{\mathrm e}^{\frac {x -6}{2 x -6}}-3\right ) \ln \relax (2)+x \right )\right ) \mathrm {csgn}\left (i \left (x -5\right )^{2} \left (\left (x -{\mathrm e}^{\frac {x -6}{2 x -6}}-3\right ) \ln \relax (2)+x \right )\right )}{2}+\frac {i \pi x \,\mathrm {csgn}\left (i \left (x -5\right )^{2}\right ) \mathrm {csgn}\left (i \left (x -5\right )^{2} \left (\left (x -{\mathrm e}^{\frac {x -6}{2 x -6}}-3\right ) \ln \relax (2)+x \right )\right )^{2}}{2}+\frac {i \pi x \,\mathrm {csgn}\left (i \left (\left (x -{\mathrm e}^{\frac {x -6}{2 x -6}}-3\right ) \ln \relax (2)+x \right )\right ) \mathrm {csgn}\left (i \left (x -5\right )^{2} \left (\left (x -{\mathrm e}^{\frac {x -6}{2 x -6}}-3\right ) \ln \relax (2)+x \right )\right )^{2}}{2}+\frac {i \pi x \mathrm {csgn}\left (i \left (x -5\right )^{2} \left (\left (x -{\mathrm e}^{\frac {x -6}{2 x -6}}-3\right ) \ln \relax (2)+x \right )\right )^{3}}{2}+i x \pi -x \ln \left (\ln \relax (2)\right )\) | \(357\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.60, size = 87, normalized size = 2.23 \begin {gather*} -\frac {2 \, x^{2} \log \left (\log \relax (2)\right ) - 2 \, {\left (x^{2} - 3 \, x\right )} \log \left (-{\left (e^{\left (\frac {3}{2 \, {\left (x - 3\right )}}\right )} \log \relax (2) + e^{\left (\frac {3}{2 \, {\left (x - 3\right )}}\right )}\right )} x + e^{\frac {1}{2}} \log \relax (2) + 3 \, e^{\left (\frac {3}{2 \, {\left (x - 3\right )}}\right )} \log \relax (2)\right ) - 4 \, {\left (x^{2} - 3 \, x\right )} \log \left (x - 5\right ) - 6 \, x \log \left (\log \relax (2)\right ) + 9}{2 \, {\left (x - 3\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.76, size = 71, normalized size = 1.82 \begin {gather*} x\,\left (\ln \left (10\,x^2-\ln \relax (2)\,\left (x^3-13\,x^2+55\,x-75\right )-25\,x-x^3+{\mathrm {e}}^{-\frac {6}{2\,x-6}}\,{\mathrm {e}}^{\frac {x}{2\,x-6}}\,\ln \relax (2)\,\left (x^2-10\,x+25\right )\right )-\ln \left (\ln \relax (2)\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.60, size = 56, normalized size = 1.44 \begin {gather*} x \log {\left (\frac {- x^{3} + 10 x^{2} - 25 x + \left (x^{2} - 10 x + 25\right ) e^{\frac {x - 6}{2 x - 6}} \log {\relax (2 )} + \left (- x^{3} + 13 x^{2} - 55 x + 75\right ) \log {\relax (2 )}}{\log {\relax (2 )}} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________