Optimal. Leaf size=29 \[ \log (3) \left (x+3 \left (3-x+x \log \left (\frac {3}{\log \left (\frac {e^x+x}{x}\right )}\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.52, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^x (3-3 x) \log (3)+\left (-2 e^x \log (3)-2 x \log (3)\right ) \log \left (\frac {e^x+x}{x}\right )+\left (3 e^x \log (3)+3 x \log (3)\right ) \log \left (\frac {e^x+x}{x}\right ) \log \left (\frac {3}{\log \left (\frac {e^x+x}{x}\right )}\right )}{\left (e^x+x\right ) \log \left (\frac {e^x+x}{x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \log (3) \left (-2-\frac {3 e^x (-1+x)}{\left (e^x+x\right ) \log \left (\frac {e^x+x}{x}\right )}+3 \log \left (\frac {3}{\log \left (\frac {e^x+x}{x}\right )}\right )\right ) \, dx\\ &=\log (3) \int \left (-2-\frac {3 e^x (-1+x)}{\left (e^x+x\right ) \log \left (\frac {e^x+x}{x}\right )}+3 \log \left (\frac {3}{\log \left (\frac {e^x+x}{x}\right )}\right )\right ) \, dx\\ &=-2 x \log (3)-(3 \log (3)) \int \frac {e^x (-1+x)}{\left (e^x+x\right ) \log \left (\frac {e^x+x}{x}\right )} \, dx+(3 \log (3)) \int \log \left (\frac {3}{\log \left (\frac {e^x+x}{x}\right )}\right ) \, dx\\ &=-2 x \log (3)+3 x \log (3) \log \left (\frac {3}{\log \left (\frac {e^x+x}{x}\right )}\right )-(3 \log (3)) \int \frac {e^x (1-x)}{\left (e^x+x\right ) \log \left (1+\frac {e^x}{x}\right )} \, dx-(3 \log (3)) \int \frac {e^x (-1+x)}{\left (e^x+x\right ) \log \left (1+\frac {e^x}{x}\right )} \, dx\\ &=-2 x \log (3)+3 x \log (3) \log \left (\frac {3}{\log \left (\frac {e^x+x}{x}\right )}\right )-(3 \log (3)) \int \left (\frac {e^x x}{\left (-e^x-x\right ) \log \left (1+\frac {e^x}{x}\right )}+\frac {e^x}{\left (e^x+x\right ) \log \left (1+\frac {e^x}{x}\right )}\right ) \, dx-(3 \log (3)) \int \left (\frac {e^x}{\left (-e^x-x\right ) \log \left (1+\frac {e^x}{x}\right )}+\frac {e^x x}{\left (e^x+x\right ) \log \left (1+\frac {e^x}{x}\right )}\right ) \, dx\\ &=-2 x \log (3)+3 x \log (3) \log \left (\frac {3}{\log \left (\frac {e^x+x}{x}\right )}\right )-(3 \log (3)) \int \frac {e^x}{\left (-e^x-x\right ) \log \left (1+\frac {e^x}{x}\right )} \, dx-(3 \log (3)) \int \frac {e^x x}{\left (-e^x-x\right ) \log \left (1+\frac {e^x}{x}\right )} \, dx-(3 \log (3)) \int \frac {e^x}{\left (e^x+x\right ) \log \left (1+\frac {e^x}{x}\right )} \, dx-(3 \log (3)) \int \frac {e^x x}{\left (e^x+x\right ) \log \left (1+\frac {e^x}{x}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.24, size = 25, normalized size = 0.86 \begin {gather*} \log (3) \left (-2 x+3 x \log \left (\frac {3}{\log \left (\frac {e^x+x}{x}\right )}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.03, size = 25, normalized size = 0.86 \begin {gather*} 3 \, x \log \relax (3) \log \left (\frac {3}{\log \left (\frac {x + e^{x}}{x}\right )}\right ) - 2 \, x \log \relax (3) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {3 \, {\left (x - 1\right )} e^{x} \log \relax (3) - 3 \, {\left (x \log \relax (3) + e^{x} \log \relax (3)\right )} \log \left (\frac {x + e^{x}}{x}\right ) \log \left (\frac {3}{\log \left (\frac {x + e^{x}}{x}\right )}\right ) + 2 \, {\left (x \log \relax (3) + e^{x} \log \relax (3)\right )} \log \left (\frac {x + e^{x}}{x}\right )}{{\left (x + e^{x}\right )} \log \left (\frac {x + e^{x}}{x}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 1.03, size = 797, normalized size = 27.48
method | result | size |
risch | \(-3 \ln \relax (3) x \ln \left (\pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left ({\mathrm e}^{x}+x \right )\right ) \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x}+x \right )}{x}\right )-\pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x}+x \right )}{x}\right )^{2}-\pi \,\mathrm {csgn}\left (i \left ({\mathrm e}^{x}+x \right )\right ) \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x}+x \right )}{x}\right )^{2}+\pi \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x}+x \right )}{x}\right )^{3}-2 i \ln \relax (x )+2 i \ln \left ({\mathrm e}^{x}+x \right )\right )+\frac {\ln \relax (3) \left (-3 i \pi \,\mathrm {csgn}\left (\frac {i}{-\pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left ({\mathrm e}^{x}+x \right )\right ) \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x}+x \right )}{x}\right )+\pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x}+x \right )}{x}\right )^{2}+\pi \,\mathrm {csgn}\left (i \left ({\mathrm e}^{x}+x \right )\right ) \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x}+x \right )}{x}\right )^{2}-\pi \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x}+x \right )}{x}\right )^{3}+2 i \ln \relax (x )-2 i \ln \left ({\mathrm e}^{x}+x \right )}\right ) \mathrm {csgn}\left (\frac {1}{-\pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left ({\mathrm e}^{x}+x \right )\right ) \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x}+x \right )}{x}\right )+\pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x}+x \right )}{x}\right )^{2}+\pi \,\mathrm {csgn}\left (i \left ({\mathrm e}^{x}+x \right )\right ) \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x}+x \right )}{x}\right )^{2}-\pi \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x}+x \right )}{x}\right )^{3}+2 i \ln \relax (x )-2 i \ln \left ({\mathrm e}^{x}+x \right )}\right )-3 i \pi \mathrm {csgn}\left (\frac {1}{-\pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left ({\mathrm e}^{x}+x \right )\right ) \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x}+x \right )}{x}\right )+\pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x}+x \right )}{x}\right )^{2}+\pi \,\mathrm {csgn}\left (i \left ({\mathrm e}^{x}+x \right )\right ) \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x}+x \right )}{x}\right )^{2}-\pi \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x}+x \right )}{x}\right )^{3}+2 i \ln \relax (x )-2 i \ln \left ({\mathrm e}^{x}+x \right )}\right )^{2}-3 i \pi \,\mathrm {csgn}\left (\frac {i}{-\pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left ({\mathrm e}^{x}+x \right )\right ) \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x}+x \right )}{x}\right )+\pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x}+x \right )}{x}\right )^{2}+\pi \,\mathrm {csgn}\left (i \left ({\mathrm e}^{x}+x \right )\right ) \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x}+x \right )}{x}\right )^{2}-\pi \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x}+x \right )}{x}\right )^{3}+2 i \ln \relax (x )-2 i \ln \left ({\mathrm e}^{x}+x \right )}\right ) \mathrm {csgn}\left (\frac {1}{-\pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left ({\mathrm e}^{x}+x \right )\right ) \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x}+x \right )}{x}\right )+\pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x}+x \right )}{x}\right )^{2}+\pi \,\mathrm {csgn}\left (i \left ({\mathrm e}^{x}+x \right )\right ) \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x}+x \right )}{x}\right )^{2}-\pi \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x}+x \right )}{x}\right )^{3}+2 i \ln \relax (x )-2 i \ln \left ({\mathrm e}^{x}+x \right )}\right )^{2}-3 i \pi \mathrm {csgn}\left (\frac {1}{-\pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left ({\mathrm e}^{x}+x \right )\right ) \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x}+x \right )}{x}\right )+\pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x}+x \right )}{x}\right )^{2}+\pi \,\mathrm {csgn}\left (i \left ({\mathrm e}^{x}+x \right )\right ) \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x}+x \right )}{x}\right )^{2}-\pi \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x}+x \right )}{x}\right )^{3}+2 i \ln \relax (x )-2 i \ln \left ({\mathrm e}^{x}+x \right )}\right )^{3}+3 i \pi +6 \ln \relax (6)-4\right ) x}{2}\) | \(797\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 30, normalized size = 1.03 \begin {gather*} -3 \, x \log \relax (3) \log \left (\log \left (x + e^{x}\right ) - \log \relax (x)\right ) + {\left (3 \, \log \relax (3)^{2} - 2 \, \log \relax (3)\right )} x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.01, size = 25, normalized size = 0.86 \begin {gather*} 3\,x\,\ln \relax (3)\,\ln \left (\frac {3}{\ln \left (\frac {x+{\mathrm {e}}^x}{x}\right )}\right )-2\,x\,\ln \relax (3) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________