Optimal. Leaf size=23 \[ 6 e^4 x^3 \left (-\frac {3 e^{-x}}{x^2}+\log (5)\right )^4 \]
________________________________________________________________________________________
Rubi [B] time = 1.78, antiderivative size = 86, normalized size of antiderivative = 3.74, number of steps used = 9, number of rules used = 6, integrand size = 100, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.060, Rules used = {6688, 12, 6742, 2197, 2176, 2194} \begin {gather*} \frac {486 e^{4-4 x}}{x^5}+6 e^4 x^3 \log ^4(5)-\frac {648 e^{4-3 x} \log (5)}{x^3}-72 e^{4-x} \log ^3(5)+72 e^{4-x} (1-x) \log ^3(5)+\frac {324 e^{4-2 x} \log ^2(5)}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2194
Rule 2197
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {18 e^{4-4 x} \left (3-e^x x^2 \log (5)\right )^3 \left (-5-4 x-e^x x^2 \log (5)\right )}{x^6} \, dx\\ &=18 \int \frac {e^{4-4 x} \left (3-e^x x^2 \log (5)\right )^3 \left (-5-4 x-e^x x^2 \log (5)\right )}{x^6} \, dx\\ &=18 \int \left (-\frac {27 e^{4-4 x} (5+4 x)}{x^6}+\frac {108 e^{4-3 x} (1+x) \log (5)}{x^4}-\frac {18 e^{4-2 x} (1+2 x) \log ^2(5)}{x^2}+4 e^{4-x} (-1+x) \log ^3(5)+e^4 x^2 \log ^4(5)\right ) \, dx\\ &=6 e^4 x^3 \log ^4(5)-486 \int \frac {e^{4-4 x} (5+4 x)}{x^6} \, dx+(1944 \log (5)) \int \frac {e^{4-3 x} (1+x)}{x^4} \, dx-\left (324 \log ^2(5)\right ) \int \frac {e^{4-2 x} (1+2 x)}{x^2} \, dx+\left (72 \log ^3(5)\right ) \int e^{4-x} (-1+x) \, dx\\ &=\frac {486 e^{4-4 x}}{x^5}-\frac {648 e^{4-3 x} \log (5)}{x^3}+\frac {324 e^{4-2 x} \log ^2(5)}{x}+72 e^{4-x} (1-x) \log ^3(5)+6 e^4 x^3 \log ^4(5)+\left (72 \log ^3(5)\right ) \int e^{4-x} \, dx\\ &=\frac {486 e^{4-4 x}}{x^5}-\frac {648 e^{4-3 x} \log (5)}{x^3}+\frac {324 e^{4-2 x} \log ^2(5)}{x}-72 e^{4-x} \log ^3(5)+72 e^{4-x} (1-x) \log ^3(5)+6 e^4 x^3 \log ^4(5)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.23, size = 25, normalized size = 1.09 \begin {gather*} \frac {6 e^{4-4 x} \left (-3+e^x x^2 \log (5)\right )^4}{x^5} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.56, size = 71, normalized size = 3.09 \begin {gather*} \frac {6 \, {\left (x^{8} e^{\left (4 \, x + 20\right )} \log \relax (5)^{4} - 12 \, x^{6} e^{\left (3 \, x + 20\right )} \log \relax (5)^{3} + 54 \, x^{4} e^{\left (2 \, x + 20\right )} \log \relax (5)^{2} - 108 \, x^{2} e^{\left (x + 20\right )} \log \relax (5) + 81 \, e^{20}\right )} e^{\left (-4 \, x - 16\right )}}{x^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.45, size = 67, normalized size = 2.91 \begin {gather*} \frac {6 \, {\left (x^{8} e^{4} \log \relax (5)^{4} - 12 \, x^{6} e^{\left (-x + 4\right )} \log \relax (5)^{3} + 54 \, x^{4} e^{\left (-2 \, x + 4\right )} \log \relax (5)^{2} - 108 \, x^{2} e^{\left (-3 \, x + 4\right )} \log \relax (5) + 81 \, e^{\left (-4 \, x + 4\right )}\right )}}{x^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.05, size = 65, normalized size = 2.83
method | result | size |
risch | \(6 x^{3} {\mathrm e}^{4} \ln \relax (5)^{4}-72 \ln \relax (5)^{3} x \,{\mathrm e}^{-x +4}+\frac {324 \ln \relax (5)^{2} {\mathrm e}^{4-2 x}}{x}-\frac {648 \ln \relax (5) {\mathrm e}^{4-3 x}}{x^{3}}+\frac {486 \,{\mathrm e}^{-4 x +4}}{x^{5}}\) | \(65\) |
default | \(-2430 \,{\mathrm e}^{4} \left (-\frac {{\mathrm e}^{-4 x}}{5 x^{5}}+\frac {{\mathrm e}^{-4 x}}{5 x^{4}}-\frac {4 \,{\mathrm e}^{-4 x}}{15 x^{3}}+\frac {8 \,{\mathrm e}^{-4 x}}{15 x^{2}}-\frac {32 \,{\mathrm e}^{-4 x}}{15 x}+\frac {128 \expIntegralEi \left (1, 4 x \right )}{15}\right )-1944 \,{\mathrm e}^{4} \left (-\frac {{\mathrm e}^{-4 x}}{4 x^{4}}+\frac {{\mathrm e}^{-4 x}}{3 x^{3}}-\frac {2 \,{\mathrm e}^{-4 x}}{3 x^{2}}+\frac {8 \,{\mathrm e}^{-4 x}}{3 x}-\frac {32 \expIntegralEi \left (1, 4 x \right )}{3}\right )+6 x^{3} {\mathrm e}^{4} \ln \relax (5)^{4}-\frac {648 \,{\mathrm e}^{-3 x} {\mathrm e}^{4} \ln \relax (5)}{x^{3}}+\frac {324 \,{\mathrm e}^{-2 x} {\mathrm e}^{4} \ln \relax (5)^{2}}{x}-72 x \,{\mathrm e}^{-x} {\mathrm e}^{4} \ln \relax (5)^{3}\) | \(159\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.54, size = 106, normalized size = 4.61 \begin {gather*} 6 \, x^{3} e^{4} \log \relax (5)^{4} - 72 \, {\left (x e^{4} + e^{4}\right )} e^{\left (-x\right )} \log \relax (5)^{3} - 648 \, {\rm Ei}\left (-2 \, x\right ) e^{4} \log \relax (5)^{2} + 648 \, e^{4} \Gamma \left (-1, 2 \, x\right ) \log \relax (5)^{2} + 72 \, e^{\left (-x + 4\right )} \log \relax (5)^{3} - 17496 \, e^{4} \Gamma \left (-2, 3 \, x\right ) \log \relax (5) - 52488 \, e^{4} \Gamma \left (-3, 3 \, x\right ) \log \relax (5) + 497664 \, e^{4} \Gamma \left (-4, 4 \, x\right ) + 2488320 \, e^{4} \Gamma \left (-5, 4 \, x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.36, size = 64, normalized size = 2.78 \begin {gather*} \frac {486\,{\mathrm {e}}^{4-4\,x}}{x^5}-72\,x\,{\mathrm {e}}^{4-x}\,{\ln \relax (5)}^3-\frac {648\,{\mathrm {e}}^{4-3\,x}\,\ln \relax (5)}{x^3}+6\,x^3\,{\mathrm {e}}^4\,{\ln \relax (5)}^4+\frac {324\,{\mathrm {e}}^{4-2\,x}\,{\ln \relax (5)}^2}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.33, size = 82, normalized size = 3.57 \begin {gather*} 6 x^{3} e^{4} \log {\relax (5 )}^{4} + \frac {- 72 x^{10} e^{4} e^{- x} \log {\relax (5 )}^{3} + 324 x^{8} e^{4} e^{- 2 x} \log {\relax (5 )}^{2} - 648 x^{6} e^{4} e^{- 3 x} \log {\relax (5 )} + 486 x^{4} e^{4} e^{- 4 x}}{x^{9}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________