Optimal. Leaf size=27 \[ -\frac {e^{4-x} x}{5 \left (6+x-(3-x) x^2\right )} \]
________________________________________________________________________________________
Rubi [F] time = 0.95, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{4-x} \left (-6+6 x-2 x^2-x^3+x^4\right )}{180+60 x-175 x^2+30 x^3+55 x^4-30 x^5+5 x^6} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{4-x} \left (-6+6 x-2 x^2-x^3+x^4\right )}{5 \left (6+x-3 x^2+x^3\right )^2} \, dx\\ &=\frac {1}{5} \int \frac {e^{4-x} \left (-6+6 x-2 x^2-x^3+x^4\right )}{\left (6+x-3 x^2+x^3\right )^2} \, dx\\ &=\frac {1}{5} \int \left (\frac {e^{4-x} \left (-18-2 x+3 x^2\right )}{\left (6+x-3 x^2+x^3\right )^2}+\frac {e^{4-x} (2+x)}{6+x-3 x^2+x^3}\right ) \, dx\\ &=\frac {1}{5} \int \frac {e^{4-x} \left (-18-2 x+3 x^2\right )}{\left (6+x-3 x^2+x^3\right )^2} \, dx+\frac {1}{5} \int \frac {e^{4-x} (2+x)}{6+x-3 x^2+x^3} \, dx\\ &=\frac {1}{5} \int \left (-\frac {18 e^{4-x}}{\left (6+x-3 x^2+x^3\right )^2}-\frac {2 e^{4-x} x}{\left (6+x-3 x^2+x^3\right )^2}+\frac {3 e^{4-x} x^2}{\left (6+x-3 x^2+x^3\right )^2}\right ) \, dx+\frac {1}{5} \int \left (\frac {2 e^{4-x}}{6+x-3 x^2+x^3}+\frac {e^{4-x} x}{6+x-3 x^2+x^3}\right ) \, dx\\ &=\frac {1}{5} \int \frac {e^{4-x} x}{6+x-3 x^2+x^3} \, dx-\frac {2}{5} \int \frac {e^{4-x} x}{\left (6+x-3 x^2+x^3\right )^2} \, dx+\frac {2}{5} \int \frac {e^{4-x}}{6+x-3 x^2+x^3} \, dx+\frac {3}{5} \int \frac {e^{4-x} x^2}{\left (6+x-3 x^2+x^3\right )^2} \, dx-\frac {18}{5} \int \frac {e^{4-x}}{\left (6+x-3 x^2+x^3\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.18, size = 25, normalized size = 0.93 \begin {gather*} -\frac {e^{4-x} x}{5 \left (6+x-3 x^2+x^3\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 22, normalized size = 0.81 \begin {gather*} -\frac {x e^{\left (-x + 4\right )}}{5 \, {\left (x^{3} - 3 \, x^{2} + x + 6\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.34, size = 22, normalized size = 0.81 \begin {gather*} -\frac {x e^{\left (-x + 4\right )}}{5 \, {\left (x^{3} - 3 \, x^{2} + x + 6\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 23, normalized size = 0.85
method | result | size |
risch | \(-\frac {x \,{\mathrm e}^{-x +4}}{5 \left (x^{3}-3 x^{2}+x +6\right )}\) | \(23\) |
gosper | \(-\frac {{\mathrm e}^{4} x \,{\mathrm e}^{-x}}{5 \left (x^{3}-3 x^{2}+x +6\right )}\) | \(25\) |
norman | \(-\frac {{\mathrm e}^{4} x \,{\mathrm e}^{-x}}{5 \left (x^{3}-3 x^{2}+x +6\right )}\) | \(25\) |
default | \(\frac {{\mathrm e}^{4} \left (\frac {{\mathrm e}^{-x} \left (151 x^{2}-861 x -1206\right )}{643 x^{3}-1929 x^{2}+643 x +3858}-\frac {\left (\munderset {\textit {\_R1} =\RootOf \left (\textit {\_Z}^{3}-3 \textit {\_Z}^{2}+\textit {\_Z} +6\right )}{\sum }\frac {\left (151 \textit {\_R1}^{2}-67 \textit {\_R1} -546\right ) {\mathrm e}^{-\textit {\_R1}} \expIntegralEi \left (1, x -\textit {\_R1} \right )}{3 \textit {\_R1}^{2}-6 \textit {\_R1} +1}\right )}{643}-\frac {6 \,{\mathrm e}^{-x} \left (12 x^{2}+21 x -49\right )}{643 \left (x^{3}-3 x^{2}+x +6\right )}+\frac {6 \left (\munderset {\textit {\_R1} =\RootOf \left (\textit {\_Z}^{3}-3 \textit {\_Z}^{2}+\textit {\_Z} +6\right )}{\sum }\frac {\left (12 \textit {\_R1}^{2}+33 \textit {\_R1} +29\right ) {\mathrm e}^{-\textit {\_R1}} \expIntegralEi \left (1, x -\textit {\_R1} \right )}{3 \textit {\_R1}^{2}-6 \textit {\_R1} +1}\right )}{643}+\frac {6 \,{\mathrm e}^{-x} \left (57 x^{2}-61 x -72\right )}{643 \left (x^{3}-3 x^{2}+x +6\right )}-\frac {6 \left (\munderset {\textit {\_R1} =\RootOf \left (\textit {\_Z}^{3}-3 \textit {\_Z}^{2}+\textit {\_Z} +6\right )}{\sum }\frac {\left (57 \textit {\_R1}^{2}-4 \textit {\_R1} -23\right ) {\mathrm e}^{-\textit {\_R1}} \expIntegralEi \left (1, x -\textit {\_R1} \right )}{3 \textit {\_R1}^{2}-6 \textit {\_R1} +1}\right )}{643}-\frac {2 \,{\mathrm e}^{-x} \left (110 x^{2}-129 x -342\right )}{643 \left (x^{3}-3 x^{2}+x +6\right )}+\frac {2 \left (\munderset {\textit {\_R1} =\RootOf \left (\textit {\_Z}^{3}-3 \textit {\_Z}^{2}+\textit {\_Z} +6\right )}{\sum }\frac {\left (110 \textit {\_R1}^{2}-19 \textit {\_R1} -270\right ) {\mathrm e}^{-\textit {\_R1}} \expIntegralEi \left (1, x -\textit {\_R1} \right )}{3 \textit {\_R1}^{2}-6 \textit {\_R1} +1}\right )}{643}-\frac {{\mathrm e}^{-x} \left (201 x^{2}-452 x -660\right )}{643 \left (x^{3}-3 x^{2}+x +6\right )}+\frac {\left (\munderset {\textit {\_R1} =\RootOf \left (\textit {\_Z}^{3}-3 \textit {\_Z}^{2}+\textit {\_Z} +6\right )}{\sum }\frac {\left (201 \textit {\_R1}^{2}-251 \textit {\_R1} -318\right ) {\mathrm e}^{-\textit {\_R1}} \expIntegralEi \left (1, x -\textit {\_R1} \right )}{3 \textit {\_R1}^{2}-6 \textit {\_R1} +1}\right )}{643}\right )}{5}\) | \(408\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.56, size = 22, normalized size = 0.81 \begin {gather*} -\frac {x e^{\left (-x + 4\right )}}{5 \, {\left (x^{3} - 3 \, x^{2} + x + 6\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.55, size = 26, normalized size = 0.96 \begin {gather*} -\frac {x\,{\mathrm {e}}^{-x}\,{\mathrm {e}}^4}{5\,\left (x^3-3\,x^2+x+6\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.32, size = 24, normalized size = 0.89 \begin {gather*} - \frac {x e^{4} e^{- x}}{5 x^{3} - 15 x^{2} + 5 x + 30} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________