Optimal. Leaf size=29 \[ x \left (1+3 \left (-\frac {2}{x}-x+\log \left (4+e-\frac {1}{(5-x)^2}+x\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 180.00, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \text {\$Aborted} \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
Aborted
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 37, normalized size = 1.28 \begin {gather*} x-3 x^2+3 x \log \left (\frac {99+e (-5+x)^2-15 x-6 x^2+x^3}{(-5+x)^2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.88, size = 46, normalized size = 1.59 \begin {gather*} -3 \, x^{2} + 3 \, x \log \left (\frac {x^{3} - 6 \, x^{2} + {\left (x^{2} - 10 \, x + 25\right )} e - 15 \, x + 99}{x^{2} - 10 \, x + 25}\right ) + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.88, size = 50, normalized size = 1.72 \begin {gather*} -3 \, x^{2} + 3 \, x \log \left (\frac {x^{3} + x^{2} e - 6 \, x^{2} - 10 \, x e - 15 \, x + 25 \, e + 99}{x^{2} - 10 \, x + 25}\right ) + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.37, size = 47, normalized size = 1.62
method | result | size |
norman | \(x -3 x^{2}+3 x \ln \left (\frac {\left (x^{2}-10 x +25\right ) {\mathrm e}+x^{3}-6 x^{2}-15 x +99}{x^{2}-10 x +25}\right )\) | \(47\) |
risch | \(x -3 x^{2}+3 x \ln \left (\frac {\left (x^{2}-10 x +25\right ) {\mathrm e}+x^{3}-6 x^{2}-15 x +99}{x^{2}-10 x +25}\right )\) | \(47\) |
default | \(-3 x^{2}+x -3 \left (\munderset {\textit {\_R} =\RootOf \left (\textit {\_Z}^{3}+\left ({\mathrm e}-6\right ) \textit {\_Z}^{2}+\left (-10 \,{\mathrm e}-15\right ) \textit {\_Z} +25 \,{\mathrm e}+99\right )}{\sum }\frac {\left (297+\textit {\_R}^{2} {\mathrm e}-20 \textit {\_R} \,{\mathrm e}-6 \textit {\_R}^{2}+75 \,{\mathrm e}-30 \textit {\_R} \right ) \ln \left (x -\textit {\_R} \right )}{2 \textit {\_R} \,{\mathrm e}+3 \textit {\_R}^{2}-10 \,{\mathrm e}-12 \textit {\_R} -15}\right )+3 \ln \left (\frac {x^{2} {\mathrm e}+x^{3}-10 x \,{\mathrm e}-6 x^{2}+25 \,{\mathrm e}-15 x +99}{x^{2}-10 x +25}\right ) x -3 \left (\munderset {\textit {\_R} =\RootOf \left (\textit {\_Z}^{3}+\left ({\mathrm e}-6\right ) \textit {\_Z}^{2}+\left (-10 \,{\mathrm e}-15\right ) \textit {\_Z} +25 \,{\mathrm e}+99\right )}{\sum }\frac {\left (-\textit {\_R}^{2} {\mathrm e}+20 \textit {\_R} \,{\mathrm e}+6 \textit {\_R}^{2}-75 \,{\mathrm e}+30 \textit {\_R} -297\right ) \ln \left (x -\textit {\_R} \right )}{2 \textit {\_R} \,{\mathrm e}+3 \textit {\_R}^{2}-10 \,{\mathrm e}-12 \textit {\_R} -15}\right )\) | \(220\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.80, size = 44, normalized size = 1.52 \begin {gather*} -3 \, x^{2} + 3 \, x \log \left (x^{3} + x^{2} {\left (e - 6\right )} - 5 \, x {\left (2 \, e + 3\right )} + 25 \, e + 99\right ) - 6 \, x \log \left (x - 5\right ) + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 37.57, size = 46, normalized size = 1.59 \begin {gather*} x+3\,x\,\ln \left (\frac {\mathrm {e}\,\left (x^2-10\,x+25\right )-15\,x-6\,x^2+x^3+99}{x^2-10\,x+25}\right )-3\,x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.44, size = 44, normalized size = 1.52 \begin {gather*} - 3 x^{2} + 3 x \log {\left (\frac {x^{3} - 6 x^{2} - 15 x + e \left (x^{2} - 10 x + 25\right ) + 99}{x^{2} - 10 x + 25} \right )} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________