Optimal. Leaf size=21 \[ \log \left (25+\frac {4 x}{(-4+x) \left (1+e^4+2 x\right )}\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.11, antiderivative size = 43, normalized size of antiderivative = 2.05, number of steps used = 3, number of rules used = 2, integrand size = 68, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.029, Rules used = {2074, 628} \begin {gather*} \log \left (-50 x^2+\left (171-25 e^4\right ) x+100 \left (1+e^4\right )\right )-\log (4-x)-\log \left (2 x+e^4+1\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 628
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {1}{4-x}-\frac {2}{1+e^4+2 x}+\frac {171-25 e^4-100 x}{100 \left (1+e^4\right )+\left (171-25 e^4\right ) x-50 x^2}\right ) \, dx\\ &=-\log (4-x)-\log \left (1+e^4+2 x\right )+\int \frac {171-25 e^4-100 x}{100 \left (1+e^4\right )+\left (171-25 e^4\right ) x-50 x^2} \, dx\\ &=-\log (4-x)-\log \left (1+e^4+2 x\right )+\log \left (100 \left (1+e^4\right )+\left (171-25 e^4\right ) x-50 x^2\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.04, size = 53, normalized size = 2.52 \begin {gather*} -8 \left (\frac {1}{8} \log \left (9+e^4+2 (-4+x)\right )-\frac {1}{8} \log \left (16+229 (-4+x)+25 e^4 (-4+x)+50 (-4+x)^2\right )+\frac {1}{8} \log (-4+x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 38, normalized size = 1.81 \begin {gather*} \log \left (50 \, x^{2} + 25 \, {\left (x - 4\right )} e^{4} - 171 \, x - 100\right ) - \log \left (2 \, x^{2} + {\left (x - 4\right )} e^{4} - 7 \, x - 4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.51, size = 70, normalized size = 3.33 \begin {gather*} 0.666666667770833 \, \log \left (x + 27.8690339214000\right ) - 1.33333333444583 \, \log \left (x + 27.7990750166000\right ) + 0.666666666666667 \, \log \left (x - 3.98995890491000\right ) + \frac {1}{3} \, \log \left ({\left | 100 \, x^{3} + 100 \, x^{2} e^{4} - 292 \, x^{2} + 25 \, x e^{8} - 346 \, x e^{4} - 371 \, x - 100 \, e^{8} - 200 \, e^{4} - 100 \right |}\right ) - \log \left ({\left | x - 4 \right |}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.21, size = 38, normalized size = 1.81
method | result | size |
norman | \(-\ln \left (x -4\right )-\ln \left (1+2 x +{\mathrm e}^{4}\right )+\ln \left (25 x \,{\mathrm e}^{4}+50 x^{2}-100 \,{\mathrm e}^{4}-171 x -100\right )\) | \(38\) |
risch | \(\ln \left (-50 x^{2}+\left (-25 \,{\mathrm e}^{4}+171\right ) x +100 \,{\mathrm e}^{4}+100\right )-\ln \left (-2 x^{2}+\left (-{\mathrm e}^{4}+7\right ) x +4 \,{\mathrm e}^{4}+4\right )\) | \(44\) |
default | \(-\ln \left (x -4\right )+\left (\munderset {\textit {\_R} =\RootOf \left (100 \textit {\_Z}^{3}+\left (100 \,{\mathrm e}^{4}-292\right ) \textit {\_Z}^{2}+\left (25 \,{\mathrm e}^{8}-346 \,{\mathrm e}^{4}-371\right ) \textit {\_Z} -100 \,{\mathrm e}^{8}-200 \,{\mathrm e}^{4}-100\right )}{\sum }\frac {\left (100 \textit {\_R} \,{\mathrm e}^{4}+100 \textit {\_R}^{2}+25 \,{\mathrm e}^{8}+54 \,{\mathrm e}^{4}+100 \textit {\_R} +29\right ) \ln \left (x -\textit {\_R} \right )}{200 \textit {\_R} \,{\mathrm e}^{4}+300 \textit {\_R}^{2}-346 \,{\mathrm e}^{4}+25 \,{\mathrm e}^{8}-584 \textit {\_R} -371}\right )\) | \(104\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.47, size = 37, normalized size = 1.76 \begin {gather*} \log \left (50 \, x^{2} + x {\left (25 \, e^{4} - 171\right )} - 100 \, e^{4} - 100\right ) - \log \left (2 \, x + e^{4} + 1\right ) - \log \left (x - 4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.79, size = 97, normalized size = 4.62 \begin {gather*} -\mathrm {atan}\left (\frac {{\mathrm {e}}^4\,3788800{}\mathrm {i}-{\mathrm {e}}^8\,640000{}\mathrm {i}+x^2\,\left (160000\,{\mathrm {e}}^4-1107200\right )\,2{}\mathrm {i}+x\,\left (40000\,{\mathrm {e}}^8-1833600\,{\mathrm {e}}^4+635200\right )\,2{}\mathrm {i}+4428800{}\mathrm {i}}{392211200\,{\mathrm {e}}^4+76640000\,{\mathrm {e}}^8+4000000\,{\mathrm {e}}^{12}-2\,x^2\,\left (18160000\,{\mathrm {e}}^4+1000000\,{\mathrm {e}}^8+79899200\right )+2\,x\,\left (22893600\,{\mathrm {e}}^4-5620000\,{\mathrm {e}}^8-500000\,{\mathrm {e}}^{12}+276384800\right )+12800\,x^2+319571200}\right )\,2{}\mathrm {i} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 2.04, size = 42, normalized size = 2.00 \begin {gather*} - \log {\left (x^{2} + x \left (- \frac {7}{2} + \frac {e^{4}}{2}\right ) - 2 e^{4} - 2 \right )} + \log {\left (x^{2} + x \left (- \frac {171}{50} + \frac {e^{4}}{2}\right ) - 2 e^{4} - 2 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________