Optimal. Leaf size=22 \[ \frac {x (-2+5 x \log (25))^2}{1+\log \left (-\frac {7}{2}+\log (x)\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.13, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-36+320 x \log (25)-575 x^2 \log ^2(25)+\left (8-80 x \log (25)+150 x^2 \log ^2(25)\right ) \log (x)+\left (-28+280 x \log (25)-525 x^2 \log ^2(25)+\left (8-80 x \log (25)+150 x^2 \log ^2(25)\right ) \log (x)\right ) \log \left (\frac {1}{2} (-7+2 \log (x))\right )}{-7+2 \log (x)+(-14+4 \log (x)) \log \left (\frac {1}{2} (-7+2 \log (x))\right )+(-7+2 \log (x)) \log ^2\left (\frac {1}{2} (-7+2 \log (x))\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {(2-5 x \log (25)) \left (18-115 x \log (25)-7 (-2+15 x \log (25)) \log \left (-\frac {7}{2}+\log (x)\right )+2 (-2+15 x \log (25)) \log (x) \left (1+\log \left (-\frac {7}{2}+\log (x)\right )\right )\right )}{(7-2 \log (x)) \left (1+\log \left (-\frac {7}{2}+\log (x)\right )\right )^2} \, dx\\ &=\int \left (-\frac {2 (-2+5 x \log (25))^2}{(-7+2 \log (x)) \left (1+\log \left (-\frac {7}{2}+\log (x)\right )\right )^2}+\frac {4-40 x \log (25)+75 x^2 \log ^2(25)}{1+\log \left (-\frac {7}{2}+\log (x)\right )}\right ) \, dx\\ &=-\left (2 \int \frac {(-2+5 x \log (25))^2}{(-7+2 \log (x)) \left (1+\log \left (-\frac {7}{2}+\log (x)\right )\right )^2} \, dx\right )+\int \frac {4-40 x \log (25)+75 x^2 \log ^2(25)}{1+\log \left (-\frac {7}{2}+\log (x)\right )} \, dx\\ &=-\left (2 \int \left (\frac {4}{(-7+2 \log (x)) \left (1+\log \left (-\frac {7}{2}+\log (x)\right )\right )^2}-\frac {20 x \log (25)}{(-7+2 \log (x)) \left (1+\log \left (-\frac {7}{2}+\log (x)\right )\right )^2}+\frac {25 x^2 \log ^2(25)}{(-7+2 \log (x)) \left (1+\log \left (-\frac {7}{2}+\log (x)\right )\right )^2}\right ) \, dx\right )+\int \left (\frac {4}{1+\log \left (-\frac {7}{2}+\log (x)\right )}-\frac {40 x \log (25)}{1+\log \left (-\frac {7}{2}+\log (x)\right )}+\frac {75 x^2 \log ^2(25)}{1+\log \left (-\frac {7}{2}+\log (x)\right )}\right ) \, dx\\ &=4 \int \frac {1}{1+\log \left (-\frac {7}{2}+\log (x)\right )} \, dx-8 \int \frac {1}{(-7+2 \log (x)) \left (1+\log \left (-\frac {7}{2}+\log (x)\right )\right )^2} \, dx+(40 \log (25)) \int \frac {x}{(-7+2 \log (x)) \left (1+\log \left (-\frac {7}{2}+\log (x)\right )\right )^2} \, dx-(40 \log (25)) \int \frac {x}{1+\log \left (-\frac {7}{2}+\log (x)\right )} \, dx-\left (50 \log ^2(25)\right ) \int \frac {x^2}{(-7+2 \log (x)) \left (1+\log \left (-\frac {7}{2}+\log (x)\right )\right )^2} \, dx+\left (75 \log ^2(25)\right ) \int \frac {x^2}{1+\log \left (-\frac {7}{2}+\log (x)\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.41, size = 22, normalized size = 1.00 \begin {gather*} \frac {x (2-5 x \log (25))^2}{1+\log \left (-\frac {7}{2}+\log (x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.45, size = 29, normalized size = 1.32 \begin {gather*} \frac {4 \, {\left (25 \, x^{3} \log \relax (5)^{2} - 10 \, x^{2} \log \relax (5) + x\right )}}{\log \left (\log \relax (x) - \frac {7}{2}\right ) + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 1.64, size = 454, normalized size = 20.64 \begin {gather*} -\frac {100 \, x^{3} \log \relax (5)^{2} \log \relax (2)}{\log \relax (2)^{2} - 2 \, \log \relax (2) \log \left (2 \, \log \relax (x) - 7\right ) + \log \left (2 \, \log \relax (x) - 7\right )^{2} - 2 \, \log \relax (2) + 2 \, \log \left (2 \, \log \relax (x) - 7\right ) + 1} + \frac {100 \, x^{3} \log \relax (5)^{2} \log \left (2 \, \log \relax (x) - 7\right )}{\log \relax (2)^{2} - 2 \, \log \relax (2) \log \left (2 \, \log \relax (x) - 7\right ) + \log \left (2 \, \log \relax (x) - 7\right )^{2} - 2 \, \log \relax (2) + 2 \, \log \left (2 \, \log \relax (x) - 7\right ) + 1} + \frac {100 \, x^{3} \log \relax (5)^{2}}{\log \relax (2)^{2} - 2 \, \log \relax (2) \log \left (2 \, \log \relax (x) - 7\right ) + \log \left (2 \, \log \relax (x) - 7\right )^{2} - 2 \, \log \relax (2) + 2 \, \log \left (2 \, \log \relax (x) - 7\right ) + 1} + \frac {40 \, x^{2} \log \relax (5) \log \relax (2)}{\log \relax (2)^{2} - 2 \, \log \relax (2) \log \left (2 \, \log \relax (x) - 7\right ) + \log \left (2 \, \log \relax (x) - 7\right )^{2} - 2 \, \log \relax (2) + 2 \, \log \left (2 \, \log \relax (x) - 7\right ) + 1} - \frac {40 \, x^{2} \log \relax (5) \log \left (2 \, \log \relax (x) - 7\right )}{\log \relax (2)^{2} - 2 \, \log \relax (2) \log \left (2 \, \log \relax (x) - 7\right ) + \log \left (2 \, \log \relax (x) - 7\right )^{2} - 2 \, \log \relax (2) + 2 \, \log \left (2 \, \log \relax (x) - 7\right ) + 1} - \frac {40 \, x^{2} \log \relax (5)}{\log \relax (2)^{2} - 2 \, \log \relax (2) \log \left (2 \, \log \relax (x) - 7\right ) + \log \left (2 \, \log \relax (x) - 7\right )^{2} - 2 \, \log \relax (2) + 2 \, \log \left (2 \, \log \relax (x) - 7\right ) + 1} - \frac {4 \, x \log \relax (2)}{\log \relax (2)^{2} - 2 \, \log \relax (2) \log \left (2 \, \log \relax (x) - 7\right ) + \log \left (2 \, \log \relax (x) - 7\right )^{2} - 2 \, \log \relax (2) + 2 \, \log \left (2 \, \log \relax (x) - 7\right ) + 1} + \frac {4 \, x \log \left (2 \, \log \relax (x) - 7\right )}{\log \relax (2)^{2} - 2 \, \log \relax (2) \log \left (2 \, \log \relax (x) - 7\right ) + \log \left (2 \, \log \relax (x) - 7\right )^{2} - 2 \, \log \relax (2) + 2 \, \log \left (2 \, \log \relax (x) - 7\right ) + 1} + \frac {4 \, x}{\log \relax (2)^{2} - 2 \, \log \relax (2) \log \left (2 \, \log \relax (x) - 7\right ) + \log \left (2 \, \log \relax (x) - 7\right )^{2} - 2 \, \log \relax (2) + 2 \, \log \left (2 \, \log \relax (x) - 7\right ) + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.39, size = 29, normalized size = 1.32
method | result | size |
risch | \(\frac {4 x \left (25 x^{2} \ln \relax (5)^{2}-10 x \ln \relax (5)+1\right )}{1+\ln \left (\ln \relax (x )-\frac {7}{2}\right )}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 35, normalized size = 1.59 \begin {gather*} -\frac {4 \, {\left (25 \, x^{3} \log \relax (5)^{2} - 10 \, x^{2} \log \relax (5) + x\right )}}{\log \relax (2) - \log \left (2 \, \log \relax (x) - 7\right ) - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.99, size = 112, normalized size = 5.09 \begin {gather*} \ln \relax (x)\,\left (300\,{\ln \relax (5)}^2\,x^3-80\,\ln \relax (5)\,x^2+4\,x\right )-1050\,x^3\,{\ln \relax (5)}^2-14\,x+\frac {2\,x\,\left (5\,x\,\ln \relax (5)-1\right )\,\left (2\,\ln \relax (x)+115\,x\,\ln \relax (5)-30\,x\,\ln \relax (5)\,\ln \relax (x)-9\right )-2\,x\,\ln \left (\ln \relax (x)-\frac {7}{2}\right )\,\left (2\,\ln \relax (x)-7\right )\,\left (75\,{\ln \relax (5)}^2\,x^2-20\,\ln \relax (5)\,x+1\right )}{\ln \left (\ln \relax (x)-\frac {7}{2}\right )+1}+280\,x^2\,\ln \relax (5) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.33, size = 31, normalized size = 1.41 \begin {gather*} \frac {100 x^{3} \log {\relax (5 )}^{2} - 40 x^{2} \log {\relax (5 )} + 4 x}{\log {\left (\log {\relax (x )} - \frac {7}{2} \right )} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________