3.53.66 \(\int \frac {e^{-e^5} (e^{e^5} x+(8 x+e^{e^5} (1-3 x^2)) \log (x)+2 e^{e^5} x \log (x) \log (\log (x)))}{\log (x)} \, dx\)

Optimal. Leaf size=23 \[ x^2 \left (4 e^{-e^5}+\frac {1}{x}-x+\log (\log (x))\right ) \]

________________________________________________________________________________________

Rubi [A]  time = 0.30, antiderivative size = 26, normalized size of antiderivative = 1.13, number of steps used = 11, number of rules used = 6, integrand size = 53, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.113, Rules used = {12, 6742, 6688, 2309, 2178, 2522} \begin {gather*} -x^3+4 e^{-e^5} x^2+x^2 \log (\log (x))+x \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(E^E^5*x + (8*x + E^E^5*(1 - 3*x^2))*Log[x] + 2*E^E^5*x*Log[x]*Log[Log[x]])/(E^E^5*Log[x]),x]

[Out]

x + (4*x^2)/E^E^5 - x^3 + x^2*Log[Log[x]]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2178

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(F^(g*(e - (c*f)/d))*ExpIntegral
Ei[(f*g*(c + d*x)*Log[F])/d])/d, x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !$UseGamma === True

Rule 2309

Int[((a_.) + Log[(c_.)*(x_)]*(b_.))^(p_)*(x_)^(m_.), x_Symbol] :> Dist[1/c^(m + 1), Subst[Int[E^((m + 1)*x)*(a
 + b*x)^p, x], x, Log[c*x]], x] /; FreeQ[{a, b, c, p}, x] && IntegerQ[m]

Rule 2522

Int[((a_.) + Log[Log[(d_.)*(x_)^(n_.)]^(p_.)*(c_.)]*(b_.))*((e_.)*(x_))^(m_.), x_Symbol] :> Simp[((e*x)^(m + 1
)*(a + b*Log[c*Log[d*x^n]^p]))/(e*(m + 1)), x] - Dist[(b*n*p)/(m + 1), Int[(e*x)^m/Log[d*x^n], x], x] /; FreeQ
[{a, b, c, d, e, m, n, p}, x] && NeQ[m, -1]

Rule 6688

Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=e^{-e^5} \int \frac {e^{e^5} x+\left (8 x+e^{e^5} \left (1-3 x^2\right )\right ) \log (x)+2 e^{e^5} x \log (x) \log (\log (x))}{\log (x)} \, dx\\ &=e^{-e^5} \int \left (-\frac {-e^{e^5} x-e^{e^5} \log (x)-8 x \log (x)+3 e^{e^5} x^2 \log (x)}{\log (x)}+2 e^{e^5} x \log (\log (x))\right ) \, dx\\ &=2 \int x \log (\log (x)) \, dx-e^{-e^5} \int \frac {-e^{e^5} x-e^{e^5} \log (x)-8 x \log (x)+3 e^{e^5} x^2 \log (x)}{\log (x)} \, dx\\ &=x^2 \log (\log (x))-e^{-e^5} \int \left (-8 x+e^{e^5} \left (-1+3 x^2\right )-\frac {e^{e^5} x}{\log (x)}\right ) \, dx-\int \frac {x}{\log (x)} \, dx\\ &=4 e^{-e^5} x^2+x^2 \log (\log (x))-\int \left (-1+3 x^2\right ) \, dx+\int \frac {x}{\log (x)} \, dx-\operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (x)\right )\\ &=x+4 e^{-e^5} x^2-x^3-\text {Ei}(2 \log (x))+x^2 \log (\log (x))+\operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (x)\right )\\ &=x+4 e^{-e^5} x^2-x^3+x^2 \log (\log (x))\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.17, size = 26, normalized size = 1.13 \begin {gather*} x+4 e^{-e^5} x^2-x^3+x^2 \log (\log (x)) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(E^E^5*x + (8*x + E^E^5*(1 - 3*x^2))*Log[x] + 2*E^E^5*x*Log[x]*Log[Log[x]])/(E^E^5*Log[x]),x]

[Out]

x + (4*x^2)/E^E^5 - x^3 + x^2*Log[Log[x]]

________________________________________________________________________________________

fricas [A]  time = 0.46, size = 34, normalized size = 1.48 \begin {gather*} {\left (x^{2} e^{\left (e^{5}\right )} \log \left (\log \relax (x)\right ) + 4 \, x^{2} - {\left (x^{3} - x\right )} e^{\left (e^{5}\right )}\right )} e^{\left (-e^{5}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*x*exp(exp(5))*log(x)*log(log(x))+((-3*x^2+1)*exp(exp(5))+8*x)*log(x)+x*exp(exp(5)))/exp(exp(5))/l
og(x),x, algorithm="fricas")

[Out]

(x^2*e^(e^5)*log(log(x)) + 4*x^2 - (x^3 - x)*e^(e^5))*e^(-e^5)

________________________________________________________________________________________

giac [A]  time = 0.24, size = 37, normalized size = 1.61 \begin {gather*} -{\left (x^{3} e^{\left (e^{5}\right )} - x^{2} e^{\left (e^{5}\right )} \log \left (\log \relax (x)\right ) - 4 \, x^{2} - x e^{\left (e^{5}\right )}\right )} e^{\left (-e^{5}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*x*exp(exp(5))*log(x)*log(log(x))+((-3*x^2+1)*exp(exp(5))+8*x)*log(x)+x*exp(exp(5)))/exp(exp(5))/l
og(x),x, algorithm="giac")

[Out]

-(x^3*e^(e^5) - x^2*e^(e^5)*log(log(x)) - 4*x^2 - x*e^(e^5))*e^(-e^5)

________________________________________________________________________________________

maple [A]  time = 0.11, size = 25, normalized size = 1.09




method result size



norman \(x +x^{2} \ln \left (\ln \relax (x )\right )-x^{3}+4 \,{\mathrm e}^{-{\mathrm e}^{5}} x^{2}\) \(25\)
risch \(x +x^{2} \ln \left (\ln \relax (x )\right )-x^{3}+4 \,{\mathrm e}^{-{\mathrm e}^{5}} x^{2}\) \(25\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2*x*exp(exp(5))*ln(x)*ln(ln(x))+((-3*x^2+1)*exp(exp(5))+8*x)*ln(x)+x*exp(exp(5)))/exp(exp(5))/ln(x),x,met
hod=_RETURNVERBOSE)

[Out]

x+x^2*ln(ln(x))-x^3+4/exp(exp(5))*x^2

________________________________________________________________________________________

maxima [C]  time = 0.39, size = 56, normalized size = 2.43 \begin {gather*} -{\left (x^{3} e^{\left (e^{5}\right )} - 4 \, x^{2} - {\left (x^{2} \log \left (\log \relax (x)\right ) - {\rm Ei}\left (2 \, \log \relax (x)\right )\right )} e^{\left (e^{5}\right )} - x e^{\left (e^{5}\right )} - {\rm Ei}\left (2 \, \log \relax (x)\right ) e^{\left (e^{5}\right )}\right )} e^{\left (-e^{5}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*x*exp(exp(5))*log(x)*log(log(x))+((-3*x^2+1)*exp(exp(5))+8*x)*log(x)+x*exp(exp(5)))/exp(exp(5))/l
og(x),x, algorithm="maxima")

[Out]

-(x^3*e^(e^5) - 4*x^2 - (x^2*log(log(x)) - Ei(2*log(x)))*e^(e^5) - x*e^(e^5) - Ei(2*log(x))*e^(e^5))*e^(-e^5)

________________________________________________________________________________________

mupad [B]  time = 3.53, size = 24, normalized size = 1.04 \begin {gather*} x+4\,x^2\,{\mathrm {e}}^{-{\mathrm {e}}^5}+x^2\,\ln \left (\ln \relax (x)\right )-x^3 \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(-exp(5))*(log(x)*(8*x - exp(exp(5))*(3*x^2 - 1)) + x*exp(exp(5)) + 2*x*log(log(x))*exp(exp(5))*log(x)
))/log(x),x)

[Out]

x + 4*x^2*exp(-exp(5)) + x^2*log(log(x)) - x^3

________________________________________________________________________________________

sympy [A]  time = 0.43, size = 22, normalized size = 0.96 \begin {gather*} - x^{3} + x^{2} \log {\left (\log {\relax (x )} \right )} + \frac {4 x^{2}}{e^{e^{5}}} + x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*x*exp(exp(5))*ln(x)*ln(ln(x))+((-3*x**2+1)*exp(exp(5))+8*x)*ln(x)+x*exp(exp(5)))/exp(exp(5))/ln(x
),x)

[Out]

-x**3 + x**2*log(log(x)) + 4*x**2*exp(-exp(5)) + x

________________________________________________________________________________________