Optimal. Leaf size=23 \[ x^2 \left (4 e^{-e^5}+\frac {1}{x}-x+\log (\log (x))\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.30, antiderivative size = 26, normalized size of antiderivative = 1.13, number of steps used = 11, number of rules used = 6, integrand size = 53, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.113, Rules used = {12, 6742, 6688, 2309, 2178, 2522} \begin {gather*} -x^3+4 e^{-e^5} x^2+x^2 \log (\log (x))+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2178
Rule 2309
Rule 2522
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=e^{-e^5} \int \frac {e^{e^5} x+\left (8 x+e^{e^5} \left (1-3 x^2\right )\right ) \log (x)+2 e^{e^5} x \log (x) \log (\log (x))}{\log (x)} \, dx\\ &=e^{-e^5} \int \left (-\frac {-e^{e^5} x-e^{e^5} \log (x)-8 x \log (x)+3 e^{e^5} x^2 \log (x)}{\log (x)}+2 e^{e^5} x \log (\log (x))\right ) \, dx\\ &=2 \int x \log (\log (x)) \, dx-e^{-e^5} \int \frac {-e^{e^5} x-e^{e^5} \log (x)-8 x \log (x)+3 e^{e^5} x^2 \log (x)}{\log (x)} \, dx\\ &=x^2 \log (\log (x))-e^{-e^5} \int \left (-8 x+e^{e^5} \left (-1+3 x^2\right )-\frac {e^{e^5} x}{\log (x)}\right ) \, dx-\int \frac {x}{\log (x)} \, dx\\ &=4 e^{-e^5} x^2+x^2 \log (\log (x))-\int \left (-1+3 x^2\right ) \, dx+\int \frac {x}{\log (x)} \, dx-\operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (x)\right )\\ &=x+4 e^{-e^5} x^2-x^3-\text {Ei}(2 \log (x))+x^2 \log (\log (x))+\operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (x)\right )\\ &=x+4 e^{-e^5} x^2-x^3+x^2 \log (\log (x))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 26, normalized size = 1.13 \begin {gather*} x+4 e^{-e^5} x^2-x^3+x^2 \log (\log (x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.46, size = 34, normalized size = 1.48 \begin {gather*} {\left (x^{2} e^{\left (e^{5}\right )} \log \left (\log \relax (x)\right ) + 4 \, x^{2} - {\left (x^{3} - x\right )} e^{\left (e^{5}\right )}\right )} e^{\left (-e^{5}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 37, normalized size = 1.61 \begin {gather*} -{\left (x^{3} e^{\left (e^{5}\right )} - x^{2} e^{\left (e^{5}\right )} \log \left (\log \relax (x)\right ) - 4 \, x^{2} - x e^{\left (e^{5}\right )}\right )} e^{\left (-e^{5}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 25, normalized size = 1.09
method | result | size |
norman | \(x +x^{2} \ln \left (\ln \relax (x )\right )-x^{3}+4 \,{\mathrm e}^{-{\mathrm e}^{5}} x^{2}\) | \(25\) |
risch | \(x +x^{2} \ln \left (\ln \relax (x )\right )-x^{3}+4 \,{\mathrm e}^{-{\mathrm e}^{5}} x^{2}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.39, size = 56, normalized size = 2.43 \begin {gather*} -{\left (x^{3} e^{\left (e^{5}\right )} - 4 \, x^{2} - {\left (x^{2} \log \left (\log \relax (x)\right ) - {\rm Ei}\left (2 \, \log \relax (x)\right )\right )} e^{\left (e^{5}\right )} - x e^{\left (e^{5}\right )} - {\rm Ei}\left (2 \, \log \relax (x)\right ) e^{\left (e^{5}\right )}\right )} e^{\left (-e^{5}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.53, size = 24, normalized size = 1.04 \begin {gather*} x+4\,x^2\,{\mathrm {e}}^{-{\mathrm {e}}^5}+x^2\,\ln \left (\ln \relax (x)\right )-x^3 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.43, size = 22, normalized size = 0.96 \begin {gather*} - x^{3} + x^{2} \log {\left (\log {\relax (x )} \right )} + \frac {4 x^{2}}{e^{e^{5}}} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________