Optimal. Leaf size=37 \[ 4-e^{e^{4 \left (-2 x-x^2-\log (4)+\frac {x}{4 \log (x)}\right )}}-\frac {x}{4} \]
________________________________________________________________________________________
Rubi [F] time = 3.29, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-\log ^2(x)+\exp \left (\exp \left (\frac {x+\left (-8 x-4 x^2-4 \log (4)\right ) \log (x)}{\log (x)}\right )+\frac {x+\left (-8 x-4 x^2-4 \log (4)\right ) \log (x)}{\log (x)}\right ) \left (4-4 \log (x)+(32+32 x) \log ^2(x)\right )}{4 \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{4} \int \frac {-\log ^2(x)+\exp \left (\exp \left (\frac {x+\left (-8 x-4 x^2-4 \log (4)\right ) \log (x)}{\log (x)}\right )+\frac {x+\left (-8 x-4 x^2-4 \log (4)\right ) \log (x)}{\log (x)}\right ) \left (4-4 \log (x)+(32+32 x) \log ^2(x)\right )}{\log ^2(x)} \, dx\\ &=\frac {1}{4} \int \left (-1+\frac {\exp \left (\frac {1}{256} e^{x \left (-4 (2+x)+\frac {1}{\log (x)}\right )}-4 x (2+x)+\frac {x}{\log (x)}\right ) \left (1-\log (x)+8 (1+x) \log ^2(x)\right )}{64 \log ^2(x)}\right ) \, dx\\ &=-\frac {x}{4}+\frac {1}{256} \int \frac {\exp \left (\frac {1}{256} e^{x \left (-4 (2+x)+\frac {1}{\log (x)}\right )}-4 x (2+x)+\frac {x}{\log (x)}\right ) \left (1-\log (x)+8 (1+x) \log ^2(x)\right )}{\log ^2(x)} \, dx\\ &=-\frac {x}{4}+\frac {1}{256} \int \left (8 \exp \left (\frac {1}{256} e^{x \left (-4 (2+x)+\frac {1}{\log (x)}\right )}-4 x (2+x)+\frac {x}{\log (x)}\right ) (1+x)+\frac {\exp \left (\frac {1}{256} e^{x \left (-4 (2+x)+\frac {1}{\log (x)}\right )}-4 x (2+x)+\frac {x}{\log (x)}\right )}{\log ^2(x)}-\frac {\exp \left (\frac {1}{256} e^{x \left (-4 (2+x)+\frac {1}{\log (x)}\right )}-4 x (2+x)+\frac {x}{\log (x)}\right )}{\log (x)}\right ) \, dx\\ &=-\frac {x}{4}+\frac {1}{256} \int \frac {\exp \left (\frac {1}{256} e^{x \left (-4 (2+x)+\frac {1}{\log (x)}\right )}-4 x (2+x)+\frac {x}{\log (x)}\right )}{\log ^2(x)} \, dx-\frac {1}{256} \int \frac {\exp \left (\frac {1}{256} e^{x \left (-4 (2+x)+\frac {1}{\log (x)}\right )}-4 x (2+x)+\frac {x}{\log (x)}\right )}{\log (x)} \, dx+\frac {1}{32} \int \exp \left (\frac {1}{256} e^{x \left (-4 (2+x)+\frac {1}{\log (x)}\right )}-4 x (2+x)+\frac {x}{\log (x)}\right ) (1+x) \, dx\\ &=-\frac {x}{4}+\frac {1}{256} \int \frac {\exp \left (\frac {1}{256} e^{x \left (-4 (2+x)+\frac {1}{\log (x)}\right )}-4 x (2+x)+\frac {x}{\log (x)}\right )}{\log ^2(x)} \, dx-\frac {1}{256} \int \frac {\exp \left (\frac {1}{256} e^{x \left (-4 (2+x)+\frac {1}{\log (x)}\right )}-4 x (2+x)+\frac {x}{\log (x)}\right )}{\log (x)} \, dx+\frac {1}{32} \int \left (\exp \left (\frac {1}{256} e^{x \left (-4 (2+x)+\frac {1}{\log (x)}\right )}-4 x (2+x)+\frac {x}{\log (x)}\right )+\exp \left (\frac {1}{256} e^{x \left (-4 (2+x)+\frac {1}{\log (x)}\right )}-4 x (2+x)+\frac {x}{\log (x)}\right ) x\right ) \, dx\\ &=-\frac {x}{4}+\frac {1}{256} \int \frac {\exp \left (\frac {1}{256} e^{x \left (-4 (2+x)+\frac {1}{\log (x)}\right )}-4 x (2+x)+\frac {x}{\log (x)}\right )}{\log ^2(x)} \, dx-\frac {1}{256} \int \frac {\exp \left (\frac {1}{256} e^{x \left (-4 (2+x)+\frac {1}{\log (x)}\right )}-4 x (2+x)+\frac {x}{\log (x)}\right )}{\log (x)} \, dx+\frac {1}{32} \int \exp \left (\frac {1}{256} e^{x \left (-4 (2+x)+\frac {1}{\log (x)}\right )}-4 x (2+x)+\frac {x}{\log (x)}\right ) \, dx+\frac {1}{32} \int \exp \left (\frac {1}{256} e^{x \left (-4 (2+x)+\frac {1}{\log (x)}\right )}-4 x (2+x)+\frac {x}{\log (x)}\right ) x \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.56, size = 31, normalized size = 0.84 \begin {gather*} -e^{\frac {1}{256} e^{-8 x-4 x^2+\frac {x}{\log (x)}}}-\frac {x}{4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.60, size = 114, normalized size = 3.08 \begin {gather*} -\frac {1}{4} \, {\left (x e^{\left (-\frac {4 \, {\left (x^{2} + 2 \, x + 2 \, \log \relax (2)\right )} \log \relax (x) - x}{\log \relax (x)}\right )} + 4 \, e^{\left (-\frac {4 \, {\left (x^{2} + 2 \, x + 2 \, \log \relax (2)\right )} \log \relax (x) - e^{\left (-\frac {4 \, {\left (x^{2} + 2 \, x + 2 \, \log \relax (2)\right )} \log \relax (x) - x}{\log \relax (x)}\right )} \log \relax (x) - x}{\log \relax (x)}\right )}\right )} e^{\left (\frac {4 \, {\left (x^{2} + 2 \, x + 2 \, \log \relax (2)\right )} \log \relax (x) - x}{\log \relax (x)}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \mathit {undef} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 29, normalized size = 0.78
method | result | size |
risch | \(-\frac {x}{4}-{\mathrm e}^{\frac {{\mathrm e}^{-\frac {x \left (4 x \ln \relax (x )+8 \ln \relax (x )-1\right )}{\ln \relax (x )}}}{256}}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.58, size = 25, normalized size = 0.68 \begin {gather*} -\frac {1}{4} \, x - e^{\left (\frac {1}{256} \, e^{\left (-4 \, x^{2} - 8 \, x + \frac {x}{\log \relax (x)}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.89, size = 26, normalized size = 0.70 \begin {gather*} -\frac {x}{4}-{\mathrm {e}}^{\frac {{\mathrm {e}}^{-8\,x}\,{\mathrm {e}}^{\frac {x}{\ln \relax (x)}}\,{\mathrm {e}}^{-4\,x^2}}{256}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.95, size = 31, normalized size = 0.84 \begin {gather*} - \frac {x}{4} - e^{e^{\frac {x + \left (- 4 x^{2} - 8 x - 8 \log {\relax (2 )}\right ) \log {\relax (x )}}{\log {\relax (x )}}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________