Optimal. Leaf size=27 \[ \frac {3 x}{1+x-x^2 \log ^2(4 x)+4 \log \left (e^{10} x\right )} \]
________________________________________________________________________________________
Rubi [F] time = 0.85, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-9+6 x^2 \log (4 x)+3 x^2 \log ^2(4 x)+12 \log \left (e^{10} x\right )}{1+2 x+x^2+\left (-2 x^2-2 x^3\right ) \log ^2(4 x)+x^4 \log ^4(4 x)+\left (8+8 x-8 x^2 \log ^2(4 x)\right ) \log \left (e^{10} x\right )+16 \log ^2\left (e^{10} x\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3 \left (37+4 \log (x)+2 x^2 \log (4 x)+x^2 \log ^2(4 x)\right )}{\left (41+x+4 \log (x)-x^2 \log ^2(4 x)\right )^2} \, dx\\ &=3 \int \frac {37+4 \log (x)+2 x^2 \log (4 x)+x^2 \log ^2(4 x)}{\left (41+x+4 \log (x)-x^2 \log ^2(4 x)\right )^2} \, dx\\ &=3 \int \left (\frac {78+x+8 \log (x)+2 x^2 \log (4 x)}{\left (-41-x-4 \log (x)+x^2 \log ^2(4 x)\right )^2}+\frac {1}{-41-x-4 \log (x)+x^2 \log ^2(4 x)}\right ) \, dx\\ &=3 \int \frac {78+x+8 \log (x)+2 x^2 \log (4 x)}{\left (-41-x-4 \log (x)+x^2 \log ^2(4 x)\right )^2} \, dx+3 \int \frac {1}{-41-x-4 \log (x)+x^2 \log ^2(4 x)} \, dx\\ &=3 \int \frac {1}{-41-x-4 \log (x)+x^2 \log ^2(4 x)} \, dx+3 \int \left (\frac {8 \log (x)}{\left (41+x+4 \log (x)-x^2 \log ^2(4 x)\right )^2}+\frac {78}{\left (-41-x-4 \log (x)+x^2 \log ^2(4 x)\right )^2}+\frac {x}{\left (-41-x-4 \log (x)+x^2 \log ^2(4 x)\right )^2}+\frac {2 x^2 \log (4 x)}{\left (-41-x-4 \log (x)+x^2 \log ^2(4 x)\right )^2}\right ) \, dx\\ &=3 \int \frac {x}{\left (-41-x-4 \log (x)+x^2 \log ^2(4 x)\right )^2} \, dx+3 \int \frac {1}{-41-x-4 \log (x)+x^2 \log ^2(4 x)} \, dx+6 \int \frac {x^2 \log (4 x)}{\left (-41-x-4 \log (x)+x^2 \log ^2(4 x)\right )^2} \, dx+24 \int \frac {\log (x)}{\left (41+x+4 \log (x)-x^2 \log ^2(4 x)\right )^2} \, dx+234 \int \frac {1}{\left (-41-x-4 \log (x)+x^2 \log ^2(4 x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.34, size = 23, normalized size = 0.85 \begin {gather*} \frac {3 x}{41+x+4 \log (x)-x^2 \log ^2(4 x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.45, size = 30, normalized size = 1.11 \begin {gather*} -\frac {3 \, x}{x^{2} \log \left (4 \, x\right )^{2} - x + 8 \, \log \relax (2) - 4 \, \log \left (4 \, x\right ) - 41} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 40, normalized size = 1.48 \begin {gather*} -\frac {3 \, x}{4 \, x^{2} \log \relax (2)^{2} + 4 \, x^{2} \log \relax (2) \log \relax (x) + x^{2} \log \relax (x)^{2} - x - 4 \, \log \relax (x) - 41} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 1.00, size = 42, normalized size = 1.56
method | result | size |
risch | \(\frac {12 x}{164+4 x -16 x^{2} \ln \relax (2) \ln \relax (x )-4 x^{2} \ln \relax (x )^{2}+16 \ln \relax (x )-16 x^{2} \ln \relax (2)^{2}}\) | \(42\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 39, normalized size = 1.44 \begin {gather*} -\frac {3 \, x}{4 \, x^{2} \log \relax (2)^{2} + x^{2} \log \relax (x)^{2} + 4 \, {\left (x^{2} \log \relax (2) - 1\right )} \log \relax (x) - x - 41} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {12\,\ln \left (x\,{\mathrm {e}}^{10}\right )+6\,x^2\,\ln \left (4\,x\right )+3\,x^2\,{\ln \left (4\,x\right )}^2-9}{2\,x+16\,{\ln \left (x\,{\mathrm {e}}^{10}\right )}^2+\ln \left (x\,{\mathrm {e}}^{10}\right )\,\left (-8\,x^2\,{\ln \left (4\,x\right )}^2+8\,x+8\right )-{\ln \left (4\,x\right )}^2\,\left (2\,x^3+2\,x^2\right )+x^2+x^4\,{\ln \left (4\,x\right )}^4+1} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.38, size = 29, normalized size = 1.07 \begin {gather*} - \frac {3 x}{x^{2} \log {\left (4 x \right )}^{2} - x - 4 \log {\left (4 x \right )} - 41 + 8 \log {\relax (2 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________