Optimal. Leaf size=29 \[ \frac {3}{\log \left (4+3 \left (1+\left (3+\frac {(1-x)^2}{x^2}+x\right )^2\right )+\log (2)\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.21, antiderivative size = 45, normalized size of antiderivative = 1.55, number of steps used = 2, number of rules used = 2, integrand size = 111, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.018, Rules used = {6, 6686} \begin {gather*} \frac {3}{\log \left (\frac {3 x^6+24 x^5+43 x^4+x^4 \log (2)-42 x^3+36 x^2-12 x+3}{x^4}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 6686
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {36-108 x+216 x^2-126 x^3-72 x^5-18 x^6}{\left (3 x-12 x^2+36 x^3-42 x^4+24 x^6+3 x^7+x^5 (43+\log (2))\right ) \log ^2\left (\frac {3-12 x+36 x^2-42 x^3+43 x^4+24 x^5+3 x^6+x^4 \log (2)}{x^4}\right )} \, dx\\ &=\frac {3}{\log \left (\frac {3-12 x+36 x^2-42 x^3+43 x^4+24 x^5+3 x^6+x^4 \log (2)}{x^4}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 37, normalized size = 1.28 \begin {gather*} \frac {3}{\log \left (43+\frac {3}{x^4}-\frac {12}{x^3}+\frac {36}{x^2}-\frac {42}{x}+24 x+3 x^2+\log (2)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 45, normalized size = 1.55 \begin {gather*} \frac {3}{\log \left (\frac {3 \, x^{6} + 24 \, x^{5} + x^{4} \log \relax (2) + 43 \, x^{4} - 42 \, x^{3} + 36 \, x^{2} - 12 \, x + 3}{x^{4}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.76, size = 48, normalized size = 1.66 \begin {gather*} \frac {3}{\log \left (3 \, x^{6} + 24 \, x^{5} + x^{4} \log \relax (2) + 43 \, x^{4} - 42 \, x^{3} + 36 \, x^{2} - 12 \, x + 3\right ) - \log \left (x^{4}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.35, size = 46, normalized size = 1.59
method | result | size |
norman | \(\frac {3}{\ln \left (\frac {x^{4} \ln \relax (2)+3 x^{6}+24 x^{5}+43 x^{4}-42 x^{3}+36 x^{2}-12 x +3}{x^{4}}\right )}\) | \(46\) |
risch | \(\frac {3}{\ln \left (\frac {x^{4} \ln \relax (2)+3 x^{6}+24 x^{5}+43 x^{4}-42 x^{3}+36 x^{2}-12 x +3}{x^{4}}\right )}\) | \(46\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.90, size = 43, normalized size = 1.48 \begin {gather*} \frac {3}{\log \left (3 \, x^{6} + 24 \, x^{5} + x^{4} {\left (\log \relax (2) + 43\right )} - 42 \, x^{3} + 36 \, x^{2} - 12 \, x + 3\right ) - 4 \, \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.79, size = 46, normalized size = 1.59 \begin {gather*} \frac {3}{\ln \left (\frac {1}{x^4}\right )+\ln \left (x^4\,\ln \relax (2)-12\,x+36\,x^2-42\,x^3+43\,x^4+24\,x^5+3\,x^6+3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.29, size = 42, normalized size = 1.45 \begin {gather*} \frac {3}{\log {\left (\frac {3 x^{6} + 24 x^{5} + x^{4} \log {\relax (2 )} + 43 x^{4} - 42 x^{3} + 36 x^{2} - 12 x + 3}{x^{4}} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________